Factors Analysis and Robust Design of Electromagnetic Leakage Protection Characteristics
Li Kui1,2, Xu Zijian1,2, Lu Zhiwei1,2, Wu Yi1, Hu Bokai1,2
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:Electromagnetic leakage protection is an important leakage fault protection technology greatly influenced by component parameters and requires high requirements for the batch production process, resulting in high production costs. The problem of instability of electromagnetic leakage protection characteristics is studied to improve its robustness and to solve the constraints of batch production of electromagnetic leakage protectors. Electromagnetic leakage protection characteristics, such as leakage operating current and operating time, depend on the parameters of the residual current transformer and its matching resistance and capacitance. If the leakage operating current is a specific value, the matching relationship curve of R1 and C1 is like the letter “U”. As C1 increases, the operating time tC increases and then decreases. The maximum value of operating time tC appears around the resonant capacitor, increasing with the increase of resonant capacitance. The inductance varies for different residual current transformer core magnetic parameters, resulting in different resistance and capacitance to be matched. However, the shape of the curve for the matching relationship between resistance and capacitance is the same, simply shifting on the axis, as shown in Fig.A1a, with a similar variation in the operating time tC, as shown in Fig.A1b. Although different compensation capacitors C1 are available to meet the requirements of the leakage protection characteristics, the stability of the characteristics varies. The leakage protection characteristics are robust if C1 is smaller than the resonant capacitance, and the tolerance of C1 has less effect on it. At the same time, the leakage protection characteristics are also influenced by the magnetic parameters of the residual current transformer core, such as Bs, Br, and Hc. The stability of the leakage protection characteristics varies under different Bs, Br, and Hc, with Br and Hc having a large impact and Bs having a small impact. For the same value of compensation capacitance, there is a lower limit kmin for Br/Hc. If Br/Hc<kmin, the leakage operating current and operating time will change rapidly with Br/Hc. While Br/Hc>1.5kmin, the value of Br/Hc is guaranteed to be greater than kmin when the dispersion of Br and Hc reaches ±20 %. In this case, the leakage protection characteristics are less affected by the dispersion of magnetic parameters, and its robustness is good. According to the above analysis, the matching design of the residual current transformer and leakage detection circuit parameters are carried out, as shown in Tab. A1. Under the core magnetic parameters of the original scheme, the matching of R1 and C1 is carried out, and the leakage protection characteristics can meet the requirements. However, if the component parameters offset up to 10 % due to the dispersion of component parameters or the temperature of the environment, the value of leakage operating current IΔ exceeds the rated leakage operating current value IΔn, and the leakage protector can not be operated with IΔ=IΔn. With a 10% change in capacitance and the magnetic parameters shifted in the direction of the maximum shift in the protection characteristics, the offset of the leakage operating current value is less than 6 %, and the offset of operating time tC is less than 7.1 % with the optimized scheme 1 and 2. The robustness of the electromagnetic leakage protection characteristics is improved, which can be obtained from the fact that the protection characteristics vary less than the parameters of the components. The consistency and stability of the leakage protection characteristics can be ensured during manufacturing and operation with the optimized scheme, which is conducive to batch production.
[1] 刘帼巾, 李想, 王泽, 等. 基于Wiener过程电子式漏电断路器的剩余寿命预测[J]. 电工技术学报, 2022, 37(2): 528-536. Liu Guojin, Li Xiang, Wang Ze, et al.Remaining life prediction of electronic residual current circuit breaker based on Wiener process[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 528-536. [2] 胡博凯, 李奎, 牛峰, 等. 低压断路器机械特性状态监测方法研究[J]. 电工技术学报, 2022, 37(13): 3317-3330. Hu Bokai, Li Kui, Niu Feng, et al.Research on condition monitoring method of mechanical charac- teristics of low-voltage circuit breaker[J]. Transa- ctions of China Electrotechnical Society, 2022, 37(13): 3317-3330. [3] 李奎, 张国盼, 郑淑梅, 等. 基于实时服役参数的交流接触器电寿命最大化控制策略[J]. 电工技术学报, 2021, 36(9): 1976-1985. Li Kui, Zhang Guopan, Zheng Shumei, et al.A control strategy for maximizing the electrical life of AC contactors based on real-time operating para- meters[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1976-1985. [4] 李奎, 李常宇, 牛峰, 等. 电磁式漏电断路器的空间磁场抗扰分析及屏蔽结构设计[J]. 电工技术学报, 2022, 37(9): 2161-2169. Li Kui, Li Changyu, Niu Feng, et al.Anti-magnetic field interference analysis and shielding structure design of electromagnetic residual current circuit breaker[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2161-2169. [5] 刘帼巾, 王泽, 李想, 等. 基于改进Bootstrap-Bayes的电子式剩余电流动作断路器可靠性评估[J]. 电工技术学报, 2022, 37(16): 4250-4258. Liu Guojin, Wang Ze, Li Xiang, et al.Reliability evaluation of electronic residual current operated circuit breakers based on improved Bootstrap- Bayes[J]. Transactions of China Electrotechnical Society, 2022, 37(16): 4250-4258. [6] Czapp S, Szultka S.Tripping limitations of residual current devices in photovoltaic installations[C]//2017 18th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, Czech Republic, 2017: 1-5. [7] Luo Xiang, Du Yaping, Wang Xinghua, et al.Tripping characteristics of residual current devices under nonsinusoidal currents[J]. IEEE Transactions on Industry Applications, 2011, 47(3): 1515-1521. [8] 李倩, 李奎, 王尧, 等. 脉动直流剩余电流下AC型漏电断路器动作特性分析[J]. 河南理工大学学报(自然科学版), 2020, 39(3): 100-107. Li Qian, Li Kui, Wang Yao, et al.Analysis on tripping performances of AC-type leakage circuit breaker under pulsating DC residual current[J]. Journal of Henan Polytechnic University (Natural Science), 2020, 39(3): 100-107. [9] 刘毅, 韩毅博, 刘思维, 等. 不同剩磁铁基纳米晶磁芯脉冲磁化特性[J]. 中国电机工程学报, 2016, 36(2): 577-584. Liu Yi, Han Yibo, Liu Siwei, et al.Pulse mag- netization characteristics of Fe-based nanocrystalline cores with different remanences[J]. Proceedings of the CSEE, 2016, 36(2): 577-584. [10] 郭琳云, 尹项根, 严新荣, 等. 配电网智能设备自取能电源的效率提升研究[J]. 中国电机工程学报, 2009, 29(增刊1): 217-221. Guo Linyun, Yin Xianggen, Yan Xinrong, et al.Research of improving power efficiency for intelligent device self-power supply utilized in power distribution network[J]. Proceedings of the CSEE, 2009, 29(S1): 217-221. [11] 刘亚东, 盛戈皞, 王葵, 等. 基于相角控制法的电流互感器取电电源设计[J]. 电力系统自动化, 2011, 35(19): 72-76. Liu Yadong, Sheng Gehao, Wang Kui, et al.A new design of current transformer energy harvesting power supply based on phase angle control method[J]. Automation of Electric Power Systems, 2011, 35(19): 72-76. [12] 郭一飞, 高厚磊. 直流偏磁对电流互感器暂态传变特性的影响[J]. 电力自动化设备, 2015, 35(12): 126-131, 144. Guo Yifei, Gao Houlei.Effect of DC bias on transient transferring characteristics of current transformer[J]. Electric Power Automation Equipment, 2015, 35(12): 126-131, 144. [13] 金能, 邢家维, 林湘宁, 等. 一种抗电流互感器饱和的工频变化量保护新方案[J]. 电工技术学报, 2018, 33(增刊1): 213-220. Jin Neng, Xing Jiawei, Lin Xiangning, et al.A new scheme of frequency variation protection resisting current transformer saturation[J]. Transactions of China Electrotechnical Society, 2018, 33(S1): 213-220. [14] Xie Pengkang, Fang Zhen, Hu Jianping, et al.Tripping characteristics of residual current devices under different working conditions[C]//IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2), Changsha, China, 2020: 2765-2769. [15] Czapp S, Dobrzynski K, Klucznik J, et al.Low- frequency tripping characteristics of residual current devices[C]//2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 2017: 1-4. [16] 李奎, 戴逸华, 牛峰, 等. 基于触发角识别的脉动直流剩余电流有效值检测方法[J]. 电力自动化设备, 2017, 37(5): 80-84. Li Kui, Dai Yihua, Niu Feng, et al.Residual pulsating DC detection based on triggering angle identi- fication[J]. Electric Power Automation Equipment, 2017, 37(5): 80-84. [17] 张保会, 李光辉, 王进, 等. 风电接入电力系统故障电流的影响因素分析及对继电保护的影响[J]. 电力自动化设备, 2012, 32(2): 1-8. Zhang Baohui, Li Guanghui, Wang Jin, et al.Affecting factors of grid-connected wind power on fault current and impact on protection relay[J]. Electric Power Automation Equipment, 2012, 32(2): 1-8. [18] 胡方, 杨文英, 赵瑞平, 等. 大功率直流接触器温度场仿真及影响因素分析[J]. 低压电器, 2011(23): 1-6. Hu Fang, Yang Wenying, Zhao Ruiping, et al.Thermal simulation of high-power DC contactor and analysis of influencing factors[J]. Low Voltage Apparatus, 2011(23): 1-6. [19] 汤蕾, 沈沉, 张雪敏. 大规模风电集中接入对电力系统暂态功角稳定性的影响(二): 影响因素分析[J]. 中国电机工程学报, 2015, 35(16): 4043-4051. Tang Lei, Shen Chen, Zhang Xuemin.Impact of large-scale wind power centralized integration on transient angle stability of power systems—part Ⅱ: factors affecting transient angle stability[J]. Pro- ceedings of the CSEE, 2015, 35(16): 4043-4051. [20] 刘铮, 樊绍胜, 胡劼睿. 基于阻抗匹配的输电线路在线取能方法研究[J]. 中国电机工程学报, 2019, 39(23): 6867-6876, 7100. Liu Zheng, Fan Shaosheng, Hu Jierui.Research on on-line energy acquisition method for transmission lines based on impedance matching[J]. Proceedings of the CSEE, 2019, 39(23): 6867-6876, 7100. [21] 程志远, 隋立程, 宋凯, 等. 谐振补偿式电流互感器取能方法的研究[J]. 电网技术, 2021, 45(12): 4896-4902. Cheng Zhiyuan, Sui Licheng, Song Kai, et al.Resonance compensation current transformer energy extraction[J]. Power System Technology, 2021, 45(12): 4896-4902. [22] 任晓东, 陈树勇, 姜涛. 电子式电流互感器高压侧取能装置的设计[J]. 电网技术, 2008, 32(18): 67-71, 76. Ren Xiaodong, Chen Shuyong, Jiang Tao.Design of a high side energy extracting device for active elec- tronic current transformer[J]. Power System Tech- nology, 2008, 32(18): 67-71, 76. [23] 娄杰, 陈常涛. 基于启动电流的电流互感器取能电源优化分析及实验验证[J]. 高电压技术, 2018, 44(6): 1774-1781. Lou Jie, Chen Changtao.Optimization analysis and experiment verification of current transformer power supply based on starting current[J]. High Voltage Engineering, 2018, 44(6): 1774-1781. [24] Liorzou F, Phelps B, Atherton D L.Macroscopic models of magnetization[J]. IEEE Transactions on Magnetics, 2000, 36(2): 418-428. [25] Jiles D C, Atherton D L.Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61(1/2): 48-60. [26] 雷阳, 段建东, 张小庆, 等. 电流互感器J-A模型参数辨识及大通流动模试验[J]. 中国电机工程学报, 2016, 36(增刊1): 240-245. Lei Yang, Duan Jiandong, Zhang Xiaoqing, et al.Identification of current transformer J-A model parameters with large current dynamic simulation experiments[J]. Proceedings of the CSEE, 2016, 36(S1): 240-245. [27] 李奎, 解晨雨, 牛峰, 等. 考虑非线性特性的剩余电流互感器建模及其输出调理电路参数设计[J]. 中国电机工程学报, 2022, 42(10): 3815-3826. Li Kui, Xie Chenyu, Niu Feng, et al.Modeling of residual current transformer considering nonlinear characteristics and design of output conditioning circuit parameters[J]. Proceedings of the CSEE, 2022, 42(10): 3815-3826. [28] Ramirez-Laboreo E, Sagues C, Llorente S.A new model of electromechanical relays for predicting the motion and electromagnetic dynamics[J]. IEEE Transa- ctions on Industry Applications, 2016, 52(3): 2545-2553.