Optimization Method of Clustering Geometric Sensitive Features of Current Vibration Signals for Fault Classification of High Voltage Circuit Breakers
Liu Huilan1, Xu Wenjie1, Zhao Shutao1, Qiu Shi2, Liu Jiaomin1
1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding 071003 China; 2. Baoding Power Supply Company State Grid Hebei Electric Power Co. Ltd Baoding 071000 China
Abstract:High voltage circuit breaker is the key safety control equipment of power system, and the loss caused by its failure is far more than its own value. The action of the circuit breaker involves the secondary electrical circuit control and the energy transmission process between mechanical components. Its complex structure and harsh operating environment are easy to cause electrical or mechanical failures. The control coil current and the vibration signal in the transmission process are effective characteristics for analyzing the abnormal operating state of the circuit breaker. In the process of fault classification of high-voltage circuit breakers using current vibration signals, the dimension of the original feature set is high, resulting in low recognition rate and degradation of classification performance. This paper proposes a clustering geometric sensitive feature optimization method suitable for high-dimensional and small samples. Firstly, the time-frequency diagram of vibration signal processed by Wigner-Ville Distribution (WVD) is quantitatively characterized by generalized dimension spectrum and sensitive dimension. The time-frequency diagram reflects the energy difference of the circuit breaker vibration signal in the form of color scale. The generalized dimension spectrum and sensitive dimension quantitatively depict the local characteristics of the time-frequency diagram, and carefully capture the time-frequency changes. Secondly, using the mutation information of the coil current signal decomposed by singular value decomposition to extend the time history of the vibration signal, the original feature set of the electrical vibration joint multi symptom domain for the complete action process of the circuit breaker is constructed. Finally, the "coefficient of variation" is defined to describe the volatility of the characteristics in the samples within and between classes, the "reward function" is used to weight the characteristics of strong divergence between classes, and the optimal collection of clustering geometry under different fault types is obtained according to the optimization of feature sensitivity factors. The corresponding relationship between the fault types and the optimal feature set is clarified. Taking ZN63-12 high-voltage circuit breaker as the research object, a fault simulation experiment platform is built. The experimental platform is used to simulate nine states of the circuit breaker, including normal, electrical fault, mechanical fault and compound fault. For each type of target state group, the feature sensitivity factor of a specific state group is calculated respectively, and the support vector machine (SVM) method is used to classify faults, and finally the optimal feature set under a specific fault type is selected. The experiment shows that: ①The original feature set of electrical vibration combined multi symptom domain in the complete action process of the circuit breaker can fully reflect the electrical fault, mechanical fault and compound fault of the circuit breaker. ②The optimization method of clustered geometric sensitive features is proposed to solve the problem of high-dimensional small samples of fault classification, and the optimal feature set for different fault types is scientifically screened through more comprehensive "rewards and punishments". ③The SVM method based on clustering geometric optimization feature set gives consideration to the accuracy of fault classification and computational performance, and has engineering application value.
刘会兰, 许文杰, 赵书涛, 裘实, 刘教民. 面向高压断路器故障分类的电流-振动信号类聚几何敏感特征优选方法[J]. 电工技术学报, 2023, 38(1): 26-36.
Liu Huilan, Xu Wenjie, Zhao Shutao, Qiu Shi, Liu Jiaomin. Optimization Method of Clustering Geometric Sensitive Features of Current Vibration Signals for Fault Classification of High Voltage Circuit Breakers. Transactions of China Electrotechnical Society, 2023, 38(1): 26-36.
[1] 杨秋玉, 王栋, 阮江军, 等. 基于振动信号的断路器机械零部件故障程度识别[J]. 电工技术学报, 2021, 36(13): 2880-2892. Yang Qiuyu, Wang Dong, Ruan Jiangjun, et al.Fault severity estimation method for mechanical parts in circuit breakers based on vibration analysis[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2880-2892. [2] 游颖敏, 王景芹, 舒亮, 等. 断路器保护特性测试电流的自适应控制策略[J]. 电工技术学报, 2020, 35(15): 3203-3213. You Yingmin, Wang Jingqin, Shu Liang, et al.Research on adaptive current control method in circuit breaker protection characteristic test[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3203-3213. [3] 王昱皓, 武建文, 马速良, 等. 基于核主成分分析-SoftMax的高压断路器机械故障诊断技术研究[J]. 电工技术学报, 2020, 35(增刊1): 267-276. Wang Yuhao, Wu Jianwen, Ma Suliang, et al.Mechanical fault diagnosis research of high voltage circuit breaker based on kernel principal component analysis and SoftMax[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 267-276. [4] Carvalho A, Cormenzana M L, Furuta H, et al.CIGRÉ technical brochure 510: final report of the 2004-2007 international enquiry on reliability of high voltage equipment, part 2 - reliability of high voltage SF6 circuit-breakers[M]. Paris: CIGRÉ, 2012. [5] Yang Qiuyu, Ruan Jiangjun, Zhuang Zhijian, et al.Chaotic analysis and feature extraction of vibration signals from power circuit breakers[J]. IEEE Transactions on Power Delivery, 2020, 35(3): 1124-1135. [6] 李建鹏, 赵书涛, 夏燕青. 基于双谱和希尔伯特-黄变换的断路器故障诊断方法[J]. 电力自动化设备, 2013, 33(2): 115-119, 125. Li Jianpeng, Zhao Shutao, Xia Yanqing.Fault diagnosis based on bispectrum and Hilbert-Huang transform for circuit breaker[J]. Electric Power Automation Equipment, 2013, 33(2): 115-119, 125. [7] 马强, 荣命哲, 贾申利. 基于振动信号小波包提取和短时能量分析的高压断路器合闸同期性的研究[J]. 中国电机工程学报, 2005, 25(13): 149-154. Ma Qiang, Rong Mingzhe, Jia Shenli.Study of switching synchronization of high voltage breakers based on the wavelet packets extraction algorithm and short time analysis method[J]. Proceedings of the CSEE, 2005, 25(13): 149-154. [8] 马速良, 武建文, 袁洋, 等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报, 2020, 35(增刊2): 421-431. Ma Suliang, Wu Jianwen, Yuan Yang, et al.Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 421-431. [9] 杨秋玉, 阮江军, 张灿, 等. 基于定量递归分析的高压断路器机械缺陷辨识及应用[J]. 电工技术学报, 2020, 35(18): 3848-3859. Yang Qiuyu, Ruan Jiangjun, Zhang Can, et al.Study and application of mechanical defect identification for high-voltage circuit breakers using recurrence quantification analysis[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3848-3859. [10] 赵书涛, 朱继鹏, 王波, 等. 断路器控制线圈电流特征诊断故障的技术分析及展望[J]. 华北电力大学学报(自然科学版), 2018, 45(5): 70-77. Zhao Shutao, Zhu Jipeng, Wang Bo, et al.Technical analysis and prospect of circuit breaker fault diagnosis based on control coil current characteristics[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(5): 70-77. [11] 韩宇, 董波. 一种基于线圈电流的高压断路器机械故障诊断方法[J]. 高压电器, 2019, 55(9): 241-246. Han Yu, Dong Bo.Mechanical fault diagnosis method for high voltage circuit breaker based on coil current[J]. High Voltage Apparatus, 2019, 55(9): 241-246. [12] 赵科, 王飞, 杨元威, 等. 基于信号特征融合与优化的高压断路器机械状态评估[J]. 高压电器, 2018, 54(4): 14-19. Zhao Ke, Wang Fei, Yang Yuanwei, et al.Mechanical condition evaluation of high voltage circuit breaker based on the features fusion and optimization of different signals[J]. High Voltage Apparatus, 2018, 54(4): 14-19. [13] 万书亭, 李聪, 豆龙江, 等. 基于振电结合的高压断路器特征提取及分类方法研究[J]. 华北电力大学学报(自然科学版), 2019, 46(4): 31-38, 53. Wan Shuting, Li Cong, Dou Longjiang, et al.Study on the signal feature extraction and classification of high voltage circuit breaker based on vibration signal and current signal[J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(4): 31-38, 53. [14] 姚旭, 王晓丹, 张玉玺, 等. 特征选择方法综述[J]. 控制与决策, 2012, 27(2): 161-166, 192. Yao Xu, Wang Xiaodan, Zhang Yuxi, et al.Summary of feature selection algorithms[J]. Control and Decision, 2012, 27(2): 161-166, 192. [15] 张浩, 赵莉华, 景伟, 等. 基于Relief特征量优化及SOM网络的断路器操作机构状态评估[J]. 高压电器, 2017, 53(9): 240-246. Zhang Hao, Zhao Lihua, Jing Wei, et al.Condition assessment of the circuit breaker operating mechanism based on Relief feature vector optimization and SOM network[J]. High Voltage Apparatus, 2017, 53(9): 240-246. [16] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号时频图像识别的高压断路器分闸缓冲器状态评估[J]. 电工技术学报, 2019, 34(19): 4048-4057. Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Opening damper condition evaluation based on vibration time-frequency images for high-voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 4048-4057. [17] 李邦彦, 齐伟强, 桂媛, 等. 基于Relief F和灰色关联分析的高压断路器机械故障诊断[J]. 高压电器, 2020, 56(6): 197-203, 210. Li Bangyan, Qi Weiqiang, Gui Yuan, et al.Mechanical fault diagnosis of high voltage circuit breaker based on Relief F and grey relation analysis[J]. High Voltage Apparatus, 2020, 56(6): 197-203, 210. [18] 邵阳, 武建文, 马速良, 等. 用于高压断路器机械故障诊断的AM-ReliefF特征选择下集成SVM方法[J]. 中国电机工程学报, 2021, 41(8): 2890-2901. Shao Yang, Wu Jianwen, Ma Suliang, et al.Integrated SVM method with AM-ReliefF feature selection for mechanical fault diagnosis of high voltage circuit breakers[J]. Proceedings of the CSEE, 2021, 41(8): 2890-2901. [19] 蔡哲元, 余建国, 李先鹏, 等. 基于核空间距离测度的特征选择[J]. 模式识别与人工智能, 2010, 23(2): 235-240. Cai Zheyuan, Yu Jianguo, Li Xianpeng, et al.Feature selection algorithm based on kernel distance measure[J]. Pattern Recognition and Artificial Intelligence, 2010, 23(2): 235-240. [20] 吴瑕, 周焰, 杨龙坡, 等. 基于聚类分析与几何的目标特征敏感性评估算法[J]. 控制与决策, 2012, 27(6): 914-918. Wu Xia, Zhou Yan, Yang Longpo, et al.Target feature sensitivity evaluation method based on clustering analysis and geometry[J]. Control and Decision, 2012, 27(6): 914-918. [21] 穆利智, 李泽文, 吕佳佳, 等. 结合EMD-WVD和布谷鸟搜索算法的输电线路故障暂态保护[J]. 电力系统自动化, 2020, 44(16): 137-144. Mu Lizhi, Li Zewen, Lü Jiajia, et al.Transient protection for transmission line fault combining empirical mode decomposition-Wigner ville distribution and cuckoo search algorithm[J]. Automation of Electric Power Systems, 2020, 44(16): 137-144. [22] Kantelhardt J W, Zschiegner S A, Koscielny-Bunde E, et al.Multifractal detrended fluctuation analysis of nonstationary time series[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 316(1-4): 87-114. [23] 徐玉秀, 张剑, 侯荣涛. 机械系统动力学分形特征及故障诊断方法[M]. 北京: 国防工业出版社, 2006. [24] 谢桦, 亚夏尔·吐尔洪, 陈昊, 等. 基于支持向量机算法的配电线路时变状态预测方法[J]. 电力系统自动化, 2020, 44(18): 74-80. Xie Hua, Yaxar Turgun, Chen Hao, et al.Prediction method for time-variant states of distribution line based on support vector machine algorithm[J]. Automation of Electric Power Systems, 2020, 44(18): 74-80.