1. Beijing Electric Power Research Institute Beijing 100075 China; 2. State Key Lab of Control and Simulation of Power Systems and Generation Equipments Tsinghua University Beijing 100084 China; 3. Henan Pinggao Electric Co. Ltd. Pingdingshan 467001 China
Abstract:The mechanical state of high voltage circuit breaker can be reflected by its vibration signals during operation. The starting moment of vibration events extracted from the vibration signal can be taken as the characteristic parameter. The factor analysis can optimize and reduce the dimension of the characteristic parameters. The support vector machine(SVM) optimized by particle swarm optimization(PSO) can classify the different states of the circuit breaker. Several mechanical failures of circuit breaker are simulated and the results show that the factor analysis and SVM are suitable for mechanical state diagnosis of high voltage circuit breaker.
程序, 关永刚, 张文鹏, 唐诚. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215.
Cheng Xu, Guan Yonggang, Zhang Wenpeng, Tang Cheng. Diagnosis Method on the Mechanical Failure of High Voltage Circuit Breakers Based on Factor Analysis and SVM. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215.
[1] 关永刚, 黄瑜珑, 钱家骊. 基于振动信号的高压断路器机械故障诊断[J]. 高电压技术, 2000, 26(3): 66-68. Guan Yonggang, Huang Yulong, Qian Jiali. An overview on mechanical failure diagnosis technique for high voltage circuit breaker based on vibration signal[J]. High Voltage Engineer, 2000, 26(3): 66-68. [2] 常广, 张振乾, 王毅. 高压断路器机械故障振动诊断综述[J]. 高压电器, 2011, 47(8): 85-90. Chang Guang, Zhang Zhenqian, Wang Yi. Review on mechanical fault diagnosis of high-voltage circuit breakers based on vibraiton diagnosis[J]. High Voltage Apparatus, 2011, 47(8): 85-90. [3] Stokes A D, Timbs L. Diagnostics of circuit breakers [C]. International Conference on Large High voltage Electric Systems, New York: GIGRE, 1988: 1-7. [4] Hess D P, Park S Y, Tangri M K. Noninvasive condition assessment and event timing for power circuit breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(1): 353-360. [5] Lee D, Lithgow B J, Morrison R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 454-459. [6] 张国钢, 王宏伟, 汤翔, 等. 基于EMD方法的高压断路器液压机构振动信号分析[J]. 高压电器, 2008, 44(3): 193-196. Zhang Guogang, Wang Hongwei, Tang Xiang, et al. Vibration signal analysis of hydraulic operating mechanism for high voltage circuit breaker based on EMD method[J]. High Voltage Apparatus, 2008, 44(3): 193-196. [7] Runde M, Ottesen G E. Vibration analysis for diagnostic testing of circuit breakers[J]. IEEE Transac- tions on Power Delivery, 1996, 11(4): 1816-1823. [8] 吴振升, 王玮, 杨学昌, 等. 基于分形理论的高压断路器机械振动信号处理[J]. 高电压技术, 2005, 31(6): 19-21. Wu Zhensheng, Wang Wei, Yang Xuechang, et al. Processing of mechanical vibration signal of high voltage circuit breakers based on fractal theory[J]. High Voltage Engineering, 2005, 31(6): 19-21. [9] 陈伟根, 范海炉, 王有元, 等. 基于小波能量与神经网络的高压断路器振动信号识别方法[J]. 电力自动化设备, 2008, 28(2): 29-32. Chen Weigen, Fan Hailu, Wang Youyuan, et al. Circuit breaker vibration signal recognition based on wavelet and neural network[J]. Electric Power Automation Equipment, 2008, 28(2): 19-32. [10] 贾嵘, 洪刚, 薛建辉, 等. 粒子群优化-最小二乘支持向量机算法在高压断路器机械故障诊断中的应用[J]. 电网技术, 2010, 34(3): 197-200. Jia Rong, Hong Gong, Xue Jianhui, et al. Application of particle swarm optimization-least square support vector machine algorithm in mechanical fault diagnosis of high-voltage circuit breaker[J]. Power System Technology, 2010, 34(3): 197-200. [11] 孙来军, 胡晓光, 纪延超, 等. 基于支持向量机的高压断路器机械状态分类[J]. 电工技术学报, 2006, 21(8): 53-58. Sun Laijun, Hu Xiaoguang, Ji Yanchao, et al. Mechanical fault classification of high voltage circuit breaker based on support vector machine[J]. Transac- tions of China Electrotechnical Society, 2006, 21(8): 53-58. [12] 高惠璇. 应用多元统计分析[M]. 北京: 北京大学出版社, 2005. [13] 邓帮飞. 高压断路器机械特性监测及故障模式识别方法研究[D]. 重庆: 重庆大学, 2008. [14] 白鹏, 张喜斌, 张斌, 等. 支持向量机理论及工程应用实例[M]. 西安: 西安电子科技大学出版社, 2008. [15] 杨世锡, 胡劲松, 吴昭同, 等. 旋转机械振动信号基于EMD的希尔伯特变换和小波变换时频分析比较[J]. 中国电机工程学报, 2003, 23(6): 102-107. Yang Shixi, Hu Jingsong, Wu Zhaotong, et al. The comparison of vibration signals’ time-frequency analysis between EMD-based HT and WT method in rotating machinery[J]. Proceedings of the CSEE, 2003, 23(6): 102-106.