Mechanical Fault Diagnosis Research of High Voltage Circuit Breaker Based on Kernel Principal Component Analysis and SoftMax
Wang Yuhao1, Wu Jianwen1, Ma Suliang1, Yang Jinggang2, Zhao Ke2
1. School of Automation Science and Electrical Engineering Beihang University Beijing 100191 China; 2. Jiangsu Electric Power Company Research Institute of State Grid Nanjing 211103 China
Abstract:The high voltage circuit breaker (HVCB) is a crucial equipment to ensure the security and reliability of power system, consequently the mechanical fault diagnosis research of HVCB has become a key issue. In this paper, a SoftMax classifier model based on Kernel principal component analysis (KPCA) was developed, which was located to identify the vibration signal of typical working conditions. Firstly, the wavelet packet time-frequency energy rate was adopted as the characteristic description of six typical mechanical conditions. Secondly, KPCA was used for dimensionality reduction to obtain a feature space with lower latitude and high-recognition. Then, SoftMax was adopted to diagnose the typical working conditions. To prove the superiority of the SoftMax diagnostic model combined with KPCA feature space, the comparative experiment of SoftMax classifier results in the origin feature space, the principal component analysis (PCA) feature space, the KPCA feature space was carried out, the comparison for accuracy of various methods in the KPCA feature space was proceed as assist. The result indicates that the proposed method provides a new thought for HVCB mechanical fault diagnosis.
王昱皓, 武建文, 马速良, 杨景刚, 赵科. 基于核主成分分析-SoftMax的高压断路器机械故障诊断技术研究[J]. 电工技术学报, 2020, 35(zk1): 267-276.
Wang Yuhao, Wu Jianwen, Ma Suliang, Yang Jinggang, Zhao Ke. Mechanical Fault Diagnosis Research of High Voltage Circuit Breaker Based on Kernel Principal Component Analysis and SoftMax. Transactions of China Electrotechnical Society, 2020, 35(zk1): 267-276.
[1] 徐建源, 朗福成, 林莘. 高压断路器机械特性在线监测技术的现状与发展趋势[J]. 华通技术, 2005(2): 17-22. Xu Jianyuan, Lang Fucheng, Lin Xin.The present condition and developing tendency of online monitoring technology of mechanical characteristics of high voltage circuit breaker[J]. Huatongjishu, 2005(2): 17-21. [2] 张健康, 粟小华, 胡勇, 等. 智能变电站保护用电流互感器配置问题及解决措施[J]. 电力系统保护与控制, 2014, 42(7): 140-145. Zhang Jiankang, Su Xiaohua, Hu Yong, et al.Pro- blems and solutions of configuration scheme of current transformer used by protection in smart substation[J]. Power System Protection and Control, 2014, 42(7): 140-145. [3] 梅飞, 梅军, 郑建勇, 等. 基于KPCA-SVM的断路器故障稳健诊断方法[J]. 电工技术学报, 2014, 29(增刊1): 50-58. Mei Fei, Mei Jun, Zheng Jianyong, et al.The robust fault diagnostic method for circuit breaker based on KPCA and SVM[J]. Transaction of China Electro- technical Society, 2014, 29(S1): 50-58. [4] 武建文, 孙一航, 张路明, 等. 一种具有故障区间隔离的断路器控制器[P]. 201110104084.X. [5] 武建文, 廉世军. 一种具有故障隔离及锁定功能的微机型分界保护开关[C]//2007中国继电保护及自动化行业年会论文集, 2007. [6] Sun Yihang, Wu Jianwen.Design on intelligent integrated controller of circuit breaker based on dual- core CPU[C]//2011 IEEE 1st International Conference on Electric Power Equipment-Switching Technology, Xi’an, 2011: 315-318. [7] 沈力, 黄瑜珑, 钱家骊. 断路器振动信号的相频特性及在监测中的应用[J]. 电工技术学报, 1997, 12(3): 42-45. Shen Li, Huang Yulong, Qian Jiali.Phase-frequency characteristics of vibration signal in circuit breaker and its application in condition monitoring[J]. Transaction of China Electrotechnical Society, 2008, 12(3): 42-45. [8] 李鹏飞, 周文俊, 曾国, 等. 高压断路器合闸弹簧动态特性及储能状态检测方法[J]. 电工技术学报, 2016, 31(3): 104-112. Li Pengfei, Zhou Wenjun, Zeng Guo, et al.The Dynamic characteristics and energy storage state detection method of high-voltage circuit breaker closing spring[J]. Transactions of China Electro- technical Society, 2016, 31(3): 104-112. [9] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. [10] 关永刚, 杨元威, 钟建英, 等. 高压断路器机械故障诊断方法综述[J]. 高压电器, 2018, 54(7): 10-19. Guan Yonggang, Yang Yuanwei, Zhong Jianying, et al.Review on mechanical fault diagnosis methods for high-voltage circuit breakers[J]. High Voltage Apparatus, 2018, 54(7): 10-19. [11] 潘徽, 宋政湘, 牛博. 基于振动的断路器状态检测系统的设计与开发[J]. 高压电器, 2014, 50(12): 83-88. Pan Hui, Song Zhengxiang, Niu Bo.Design and development of condition monitoring system for circuit breaker based on vibration signal[J]. High Voltage Apparatus, 2014, 50(12): 83-88. [12] 李建鹏. 基于振—声联合分析的高压断路器机械故障诊断研究[D]. 北京: 华北电力大学, 2012. [13] Lee D, Lithgow B J, Morrison R E.New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 454-459. [14] Hess D P, Park S Y, Tangri M K.Noninvasive condition assessment and event timing for power circuit breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(1): 353-360. [15] Lai M L, Park S Y, Lin C C, et al.Mechanical failure detection of circuit breakers[J]. IEEE Transactions on Power Delivery, 1988, 3(4): 1724-1731. [16] Ma Suliang, Chen Mingxuan, Wu Jianwen, et al.Intelligent fault diagnosis of HVCB with feature space optimization-based random forest[J]. Sensors, 2018, 18(4): DOI: 10.3390/s18041221. [17] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236. Sun Yihang, Wu Jianwen, Lian shijun, et al. Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transaction of China Electro- technical Society, 2014, 29(3): 228-236. [18] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transaction of China Electrotechnical Society, 2014, 29(7): 209-215. [19] 孙来军, 胡晓光, 纪延超. 基于支持向量机的高压断路器机械状态分类[J]. 电工技术学报, 2006, 21(8): 53-58. Sun Laijun, Hu Xiaoguang, Ji Yanchao.Mechanical fault classification of high voltage circuit breakers based on support vector machine[J]. Transaction of China Electrotechnical Society, 2006, 21(8): 53-58. [20] 汪先兵, 费树岷, 徐清扬, 等. BP神经网络PID控制的永磁真空开关储能电容恒流充电特性分析[J]. 电工技术学报, 2015, 30(10): 212-218. Wang Xianbing, Fei Shumin, Xu Qingyang, et al.Constant current charging characteristic analysis of storage capacitor based on BP neural network PID control for permanent magnet vacuum switch[J]. Transaction of China Electrotechnical Society, 2015, 30(10): 212-218. [21] 刘艳, 陈丽安. 基于SOM的真空断路器机械故障诊断[J]. 电工技术学报, 2017, 32(5): 49-54. Liu Yan, Chen Li’an.Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transa- ction of China Electrotechnical Society, 2017, 32(5): 49-54. [22] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018(11): 2535-2544. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transaction of China Electrotechnical Society, 2018(11): 2535-2544. [23] 王磊, 陈青, 高洪雨, 等. 基于大数据挖掘技术的智能变电站故障追踪架构[J]. 电力系统自动化, 2018, 42(3): 84-91. Wang Lei, Chen Qing, Gao Hongyu, et al.Framework of fault trace for smart substation based on big data mining technology[J]. Automation of Electric Power Systems, 2018, 42(3): 84-91. [24] 王英英, 罗毅, 涂光瑜. 基于粗糙集与决策树的配电网故障诊断方法[J]. 高电压技术, 2008(4): 794-798. Wang Yingying, Luo Yi, Tu Guangyu.Fault Diagnosis method for distribution networks based on the rough sets and decision tree theory[J]. High Voltage Engineering, 2008(4): 794-798. [25] 宁可, 孙同晶, 赵浩强. 基于属性关联的朴素贝叶斯分类算法[J]. 计算机工程, 2018(6): 18-23. Ning Ke, Sun Tongjing, Zhao Haoqing.Naive Bayesian classification algorithm based on attribute association[J]. Computer Engineering, 2018, 44(6): 18-23. [26] 张伟, 王志海, 原继东, 等. 一种局部属性加权朴素贝叶斯分类算法[J]. 北京交通大学学报, 2018, 42(2): 14-21. Zhang Wei, Wang Zhihai, Yuan Jidong, et al.A locally attribute weighted naive Bayes classifier[J]. Journal of Beijing Jiaotong University, 2018, 42(2): 14-21. [27] 孟晓承, 韩学山, 许易经, 等. SF6高压断路器机械故障概率的非精确条件估计[J]. 电工技术学报, 2019, 34(4): 693-702. Meng Xiaocheng, Han Xueshan, Xu Yijing, et al.Imprecise estimation for conditional mechanical outage probabilities of SF6 high-voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 693-702. [28] 陈士刚, 关永刚, 张小青, 等. 不完备故障类别下基于Multi-SVDD的高压隔离开关故障诊断方法[J]. 电工技术学报, 2018, 33(11): 2439-2447. Chen Shigang, Guan Yonggang, Zhang Xiaoqing, et al.Diagnosis method of high voltage isolating switch fault based on Multi-SVDD under incomplete fault type[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2439-2447. [29] 张佩, 赵书涛, 申路, 等. 基于改进EEMD的高压断路器振声联合故障诊断方法[J]. 电力系统保护与控制, 2014, 42(8): 77-81. Zhang Pei, Zhao Shutao, Shen Lu, et al.Research on vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breaker based on improved EEMD[J]. Power System Protection and Control, 2014, 42(8): 77-81. [30] 李永祥, 林莘, 马跃乾, 等. 高压断路器新型电机操动机构的研究[J]. 电气技术, 2008, 9(9): 78-83. Li Yongxiang, Lin Xin, Ma Yueqian, et al.The research on novel motor operating mechanism of high voltage circuit breaker[J]. Electrical Engineering, 2008, 9(9): 78-83. [31] 周伟达. 核机器学习方法研究[D]. 西安: 西安电子科技大学, 2003. [32] 陈宁, 沙倩, 汤奕, 等. 基于交叉熵理论的风电功率组合预测方法[J]. 中国电机工程学报, 2012, 32(4): 29-34, 22. Chen Ning, Sha Qian, Tang Yi, et al.A combination method for wind power predication based on cross entropy theory[J]. Proceedings of the CSEE, 2012, 32(4): 29-34, 22. [33] 翟永杰, 韩璞, 王东风, 等. 基于损失函数的SVM算法及其在轻微故障诊断中的应用[J]. 中国电机工程学报, 2003, 23(9): 198-203. Zhai Yongjie, Han Pu, Wang Dongfeng, et al.Risk function based SVM algorithm and its application to a slight malfunction diagnosis[J]. Proceedings of the CSEE, 2003, 23(9): 198-203. [34] 孙亚新. 语音情感识别中的特征提取与识别算法研究[D]. 广州: 华南理工大学, 2015. [35] 朱丽. 振动传感器安装方式对频响的影响[J]. 中国科技信息, 2017(14): 56-57. Zhu Li.The influence of vibration sensor installation mode on frequency response[J]. China Science and Technology Information, 2017(14): 56-57.