Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Rough Set Neural Networks and Vibration Signals
Lin Lin1,2, Chen ZhiYing1,2
1. High-Voltage Key Laboratory of Fujian Province Xiamen University of TechnologyXiamen 361024 China; 2. School of Electrical Engineering & Automation Xiamen University of Technology Xiamen 361024 China;
Abstract:In order to accurately detect the type of mechanical failure of high-voltage circuit breakers, A fault diagnosis method for high-voltage circuit breaker vibration signals based on the combination of the intrinsic mode function (IMF) spectrum energy and the rough set neural network is proposes. Firstly, the circuit breaker vibration signal is decomposed by empirical mode decomposition (EMD), and then several IMF is obtained. Hilbert transform is performed on each IMF component to obtain the Hilbert marginal spectrum. Its square is called the marginal spectrum energy as the feature vector. Based on the rough set theory, the attribute reduction analysis is performed on the eigenvectors to establish a simple and clear decision table. The radial basis function (RBF) neural network fault model is established according to the decision table rules. Experimental results show that this method can effectively classify the types of mechanical faults of high-voltage circuit breakers.
林琳, 陈志英. 基于粗糙集神经网络和振动信号的高压断路器机械故障诊断[J]. 电工技术学报, 2020, 35(zk1): 277-283.
Lin Lin, Chen ZhiYing. Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Rough Set Neural Networks and Vibration Signals. Transactions of China Electrotechnical Society, 2020, 35(zk1): 277-283.
[1] 段传宗, 鄢志平, 鄢志辉. 高压断路器故障检测与诊断技术[M]. 北京: 中国电力出版社, 2014. [2] 常广, 王毅, 王玮. 采用振动信号零相位滤波时频熵的高压断路器机械故障诊断[J]. 中国电机工程学报, 2013, 33(3): 155-162, 3. Chang Guang, Wang Yi, Wang Wei.Mechanical fault diagnosis of high voltage circuit breakers utilizing zero-phase filter timer-frequence entropy of vibration signal[J]. Proceedings of the CSEE, 2013, 33(3): 155-162, 3. [3] 孙来军, 胡晓光, 纪延超. 一种基于振动信号的高压断路器故障诊断新方法[J]. 中国电机工程学报, 2006, 26(6): 157-161. Sun Laijun, Hu Xiaoguang, Ji Yanchao.A new method of fault diagnosis for high voltage circuit breakers based on vibration signals[J]. Proceedings of the CSEE, 2006, 26(6): 157-161. [4] Hoidalen H K,Runde M.Continuous monitoring of circuit breakers using vibration analysis[J]. IEEE Transa- ctions on Power Delivery, 2005, 20(4): 2458-2465. [5] 赵洋, 刘汉宇, 曾庆军. 基于机械振动信号的高压真空断路器故障诊断研究[J]. 高压电器, 2010, 46(2): 46-51. Zhao Yang, Liu Hanyu, Zeng Qingjun.Study on fault diagnosis of high voltage vacuum circuit breaker based on mechanical vibration signal[J]. High Voltage Apparatus, 2010, 46(2): 46-51. [6] 缪希仁, 王燕. 低压断路器振动特性分析与合闸同期性研究[J]. 电工技术学报, 2013, 28(6): 81-85. Miao Xiren, Wang Yan.Vibration characteristic analysis and closing synchronization research of low voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 81-85. [7] 王继锋, 唐文虎, 季天瑶. 基于振动信号的SF6高压断路器操动机构状态监测[J]. 高压电器, 2017, 53(9): 53-59, 65. Wang Jifeng, Tang Wenhu, Ji Tianyao.On-line condition monitoring of operating mechanism for SF6 high voltage circuit breakers based on vibration signals[J]. High Voltage Apparatus, 2017, 53(9): 53-59, 65. [8] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20-30. Sun Shuguang, Yu Han, Du Taihang, et al.Diagnosis on switching fault of conventional circuit breaker based on vibration signal sample entropy and RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20-30. [9] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage cirvuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215. [10] 刘艳, 陈丽安. 基于SOM的真空断路器机械故障诊断[J]. 电工技术学报, 2017, 32(5): 49-54. Liu Yan, Chen Li’an.Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 49-54. [11] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018, 33(11): 2535-2544. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2535-2544. [12] 程学珍, 林晓晓, 朱春华, 等. 基于时序信息的模糊Petri网电网故障诊断方法[J]. 电工技术学报, 2017, 32(14): 229-237. Cheng Xuezhen, Lin Xiaoxiao, Zhu Chunhua, et al.Power system fault analysis based on hierarchical fuzzy Petri net considering time association character[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 229-237. [13] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236. Sun Yihang, Wu Jianwen, Lian Shijun, et al.Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transactions of China Electro- technical Society, 2014, 29(3): 228-236. [14] 陈伟根, 邓帮飞, 杨彬. 基于振动信号经验模态分解及能量熵的高压断路器故障识别[J]. 高压电器, 2009, 45(2): 90-93, 96. Chen Weigen, Deng Bangfei, Yang Bin.Fault recogni- tion for high voltage circuit breaker based on EMD of vibration signal and energy entropy characteristic[J]. High Voltage Apparatus, 2009, 45(2): 90-93, 96. [15] 缪希仁, 吴晓梅, 石敦义, 等. 采用HHT振动分析的低压断路器合闸同期辨识[J]. 电工技术学报, 2014, 29(11): 154-161. Miao Xiren, Wu Xiaomei, Shi Dunyi, et al.Switching synchronism identification of low voltage circuit breaker utilizing HHT analysis to vibration signal[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 154-161. [16] 李东东, 周文磊, 郑小霞, 等. 基于自适应EEMD和分层分形维数的风电机组行星齿轮箱故障检测[J]. 电工技术学报, 2017, 32(22): 233-241. Li Dongdong, Zhou Wenlei, Zheng Xiaoxia, et al.Diagnosis of wind turbine planetary gearbox faults based on adaptive EEMD and hierarchical fractal dimension[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 233-241. [17] 任志玲, 张媛媛. 基于改进的HHT变换和信心度的配电网故障选线[J]. 电力系统保护与控制, 2015, 43(10): 8-13. Ren Zhiling, Zhang Yuanyuan.Fault line selection of distribution network based on improved Hilbert- Huang transform and identification confidence degree[J]. Power System Protection and Control, 2015, 43(10): 8-13. [18] 李永德, 李红伟, 张炳成, 等. 融合粗糙集与神经网络的燃气轮发电机组振动故障诊断方法[J]. 电力系统保护与控制, 2014, 42(8): 90-94. Li Yongde, Li Hongwei, Zhang Bingcheng, et al.Fault diagnosis of gas turbine generator set by com- bination of rough sets and nerual network[J]. Power System Protection and Control, 2014, 42(8): 90-94. [19] 蒋亚坤, 李文云, 赵莹, 等. 粗糙集与证据理论结合的电网运行优质性综合评价[J]. 电力系统保护与控制, 2015, 43(13): 1-7. Jiang Yakun, Li Wenyun, Zhao Ying, et al.Evalu- ation of power quality performance based on rough set and evidence theory[J]. Power System Protection and Control, 2015, 43(13): 1-7.