Abstract:In order to suppress the rotor overcurrent of doubly fed induction generator (DFIG) under the symmetrical voltage fault, an optimized rotor current control strategy aimed at restraining the free component of rotor current is proposed based on the DFIG mathematic model and the production principle of the flux free component. Another control loop for the free component of rotor current is added to the convenient current loop for suppressing the overcurrent caused by the voltage fault.Furthermore, on the basis of the DFIG’s control model, the effects of the control system with the controller are analyzed. Taking the effects into account, the parameters of the controller can be designed and enhance the resisting disturbance ability of DFIG on the grid voltage fault. Finally, the DFIG experimental system is built, and the availability of the proposed current control strategy is validated by the experiment results.
年珩, 程鹏, 诸自强. 电网电压对称故障时DFIG转子电流的优化控制策略[J]. 电工技术学报, 2014, 29(7): 200-208.
Nian Heng, Cheng Peng, Ziqiang Zhu. Optimized Control Strategy of Rotor Current for Doubly Fed Induction Generators During Symmetrical Voltage Fault. Transactions of China Electrotechnical Society, 2014, 29(7): 200-208.
[1] 刘其辉, 贺益康, 张建华. 交流励磁变速恒频双馈型异步发电机的稳态功率关系[J]. 电工技术学报, 2006, 21(2): 39-44. Liu Qihui, He Yikang, Zhang Jianhua. Steady-state power relation of AC-excited variable-speedconstant- frequency doubly-fed induction generator[J]. Transac- tions of China Electrotechnical Society, 2006, 21(2): 39-44. [2] 林成武, 王凤翔, 姚兴佳. 变速恒频双馈风力发电机励磁控制技术研究[J]. 中国电机工程学报, 2003, 23(11): 122-125. Lin Chengwu, Wang Fengxiang, Yao Xingjia. Study on excitation control of VSCF doubly fed wind power generator[J]. Proceedings of the CSEE, 2003, 23(11): 122-125. [3] 贺益康, 周鹏. 变速恒频双馈异步风力发电系统低电压穿越技术综述[J]. 电工技术学报, 2009, 24(9): 140-146. He Yikang, Zhou Peng. Overview of the low voltage ride-through technology for variable speed constant frequency doubly fed wind power generation systems [J]. Transactions of China Electrotechnical Society, 2009, 24(9): 140-146. [4] 贺益康, 胡家兵. 双馈异步风力发电机并网运行中的几个热点问题[J]. 中国电机工程学报, 2012, 32(27): 1-15. He Yikang, Hu Jiabing. Several hot-spot issues associated with the grid-connect operations of wind- turbines driven doubly fed induction generators[J]. Proceedings of the CSEE, 2012, 32(27): 1-15. [5] 国家电网公司. Q/GDW392—2009 风电场接入电网技术规定[S]. 北京: 中国电力出版社, 2009. [6] NetzGmbh E ON. Grid Code. Germany. Available: http://www.nerc.com/docs/pc/ivgtf/German_EON_ Grid_Code.pdf. [7] Morren J, de Haan S W H. Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 435-441. [8] Hansen A D, Michalke G. Fault ridethrough capability of DFIG wind turbines[J]. Renewable Energy, 2007, 32(9): 1594-1610. [9] 胡家兵, 贺益康. 双馈风力发电系统的低压穿越运行与控制[J]. 电力系统自动化, 2008, 32(2): 49-52. Hu Jiabing, He Yikang. Low voltage ride through operation and control of doubly fed induction generator wind turbines[J]. Automation of Electric Power Systems, 2008, 32(2): 49-52. [10] Martinez J, Kjaer P C, Rodriguez P, et al. Parameterization of a synchronous generator to represent a doubly fed induction generator with chopper protection for fault studies[J]. Wind Energy, 2011, 14(1): 107-118. [11] Yan X, Venkataramanan G, Wang Y, et al. Grid-fault tolerant operation of a DFIG wind turbine generator using a passive resistance network[J]. IEEE Transactions on Power Electronics, 2011, 26(10): 2896-2905. [12] Yang J, Fletcher J E, O'reilly J. A series dynamic resistorbased converter protection scheme for doubly- fed induction generator during various fault conditions [J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 422-432. [13] Cheng P, Nian H. An improved control strategy for DFIG system and dynamic voltage restorer under grid voltage dip[C]. 21st IEEE International Symposium on Industrial Electronics, Hangzhou, China, 2012: 1868-1873. [14] Qiao W, Venayagamoorthy G K, Harley R G. Real- time implementation of a statcom on a wind farm equipped with doubly fed induction generators[J]. IEEE Transactions on Industry Applications, 2009, 45(1): 98-107. [15] 廖勇, 李辉, 姚骏, 等. 采用串联网侧变换器的双馈风电机组低电压过渡控制策略[J]. 中国电机工程学报, 2009, 29(37): 90-98. Liao Yong, Li Hu, Yao Jun, et al. Low voltage ride-through control strategy of a doubly fed induction generator wind turbine with series grid-side converter[J]. Proceedings of the CSEE, 2009, 29(37): 90-98. [16] Lopez J, Sanchis P, Roboam X, et al. Dynamic behavior of the doubly fed induction generator during three-phase voltage dips[J]. IEEE Transactions on Energy Conversion, 2007, 22(3): 709-717. [17] 姚骏, 廖勇, 唐建平. 电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略[J]. 中国电机工程学报, 2007, 27(30): 64-71. Yao Jun, Liao Yong, Tang Jianping. Ride-through control strategy of AC excited wind-power generator for grid short-circuit fault [J]. Proceedings of the CSEE, 2007, 27(30): 64-71. [18] Lima F K A, Luna A, Member S, et al. Rotor voltage dynamics in the doubly fed induction generator during grid faults[J]. IEEE Transactions on Power Electronics, 2010, 25(1): 118-130. [19] Xiang D, Ran L, Tavner PJ, et al. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through[J]. IEEE Transactions on Energy Conversion, 2006, 21(3): 652-662. [20] Hu S, Lin X, Kang Y, et al. An improved low-voltage ride-through control strategy of doubly fed induction generator during grid faults[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3653-3665. [21] 张禄, 金新民, 战亮宇, 等. 电网电压对称跌落下的双馈感应风力发电机磁链有源衰减控制[J]. 电工技术学报, 2012, 27(9): 191-197. Zhang Lu, Jin Xinmin, Zhan Liangyu, et al. Flux active damping control of the doubly fed induction generator under grid voltage symmetrical dip[J]. Transactions of China Electrotechnical Society, 2012, 27(9): 191-197. [22] Liang J, Qiao W, Harley R G. Feed-forward transient current control for low voltage ride through enhance- ment of DFIG wind turbines[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 836-43. [23] Zmood D N, Holmes D G. Stationary frame current regulation of PWM inverters with zero steady-state error[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 814-822.