Abstract:A fuzzy-logic-based sliding mode controller is proposed for wind energy conversion system with a variable speed DFIG. The controller is composed of the wind turbine sliding-mode controller and the DFIG sliding-mode controller. The turbine controller is used to achieve a robust tracking of the optimal blade rotor speed to optimize the wind energy capturing, and the DFIG controller is applied to ensure a robust tracking of both the generator torque and the rotor flux. The switching gains of the sliding modes are adapted based on the fuzzy interference system. The global controller is tested and validated on a flexible wind turbine simulator, and the results show that the proposed scheme has better performance and higher wind-energy-utilization ratio than the conventional feeback linearization method in presence of parameter variations.
张细政, 王耀南. 基于模糊逻辑的变速双馈风力发电系统级联滑模鲁棒控制[J]. 电工技术学报, 2011, 26(7): 44-50.
Zhang Xizheng, Wang Yaonan. Robust Cascaded Sliding-Mode Control Based on Fuzzy-Logic for Variable Speed DFIG Wind Turbines. Transactions of China Electrotechnical Society, 2011, 26(7): 44-50.
[1] 刘万琨, 张志英, 李银凤, 等.风能与风力发电技术[M]. 北京: 化学工业出版社, 2006. [2] Joselin H G, Iniyanb S, Sreevalsanc E, et al. A review of wind energy technologies[J]. Renewable and Sustainable Energy Reviews, 2007, 11(6): 1117- 1145. [3] Ullah N R, Thiringer T. Variable speed wind turbines for power system stability enhancement[J]. IEEE Transactions Energy Conversion, 2007, 22(1): 52-60. [4] 马炜, 俞俊杰, 吴国祥, 等. 双馈风力发电系统最大功率点跟踪控制策略[J]. 电工技术学报, 2009, 24(4) : 202-208. Ma Wei, Yu Junjie, Wu Guoxiang, et al. MPPT control strategy for doubly-fed wind power generation[J]. Transactions of China Electrotechnical Society, 2009, 24(4): 202-208. [5] Koutroulis E, Kalaitzakis K.Design of a maximum power tracking system for wind energy conversion applications[J]. IEEE Transactions on Industry Electronics, 2006, 53(2): 486-494. [6] Fernandez L M, Garcia C A, Jurado F. Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation[J]. Energy, 2008, 33: 1438-1452. [7] 黄守道, 王毅, 王耀南. 无刷双馈电机风力发电控制系统与仿真研究[J]. 湖南大学学报 (自然科学版), 2004, 31(1): 37-40. Huang Shoudao, Wang Yi, Wang Yaonan. Brushless doubly-fed machine wind-power generation control system and its simulation[J]. Journal of Hunan University (Natural Sciences), 2004, 31(1): 37-40. [8] 郭家虎, 张鲁华, 蔡旭. 双馈风力发电机的精确线性化解耦控制[J]. 电机与控制学报, 2009, 13(1): 57-62. Guo Jiahu, Zhang Luhua, Cai Xu. Exact linearization control scheme of DFIG[J]. Electric Machines and Control, 2009, 13(1): 57-62. [9] Andreas P. Analysis, modeling and control of doubly fed induction generators for wind turbines[D]. Chalmers University of Technology, Sweden, 2005. [10] Boukhezzar B, Siguerdidjane H. Nonlinear control with winde estimation of a DFIG variable speed wind turbine for power capture optimization[J]. Energy Conversion and Management, 2009, 50(4): 885-892. [11] Feng W, Zhang X P, Ju P, et al. Decentralized nonlinear control of wind turbine with doubly fed induction generator[J]. IEEE Transactions on Power System, 2008, 23(2):613-621. [12] Brice B, Tarek A A, Mohamed E H, et al. Sliding mode power control of variable-speed wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2008, 23(2): 551-558. [13] Hernan D B, Ricardo J M. Dynamical variable structure controller for power regulation of wind energy conversion system [J]. IEEE Transactions on Energy Conversion, 2004, 19(4): 756-763. [14] 杨俊华, 李建华, 吴捷, 等. 无刷双馈风力发电机组的模糊自适应控制[J]. 电机与控制学报, 2006, 10(4): 346-350. Yang Junhua, Li Jianhua, Wu Jie, et al. Fuzzy adaptive control of novel brushless doubly-fed wind turbine[J]. Electric Machines and Control, 2006, 10(4): 346-350. [15] 米阳, 韩云昊. 复杂系统的模糊变结构控制及其应用[M]. 北京: 冶金工业出版社, 2008.