Abstract:Based on the existing shortcomings of mechanical fault diagnosis of high voltage circuit breakers, this paper proposes a new method of high voltage circuit breaker mechanical fault diagnosis which based on the joint of vibration signal and acoustic signal. This method first uses fast kernel independent component analysis(fast KICA) to make blind source separation processing for acoustic signals collected, and processed acoustic signals and collected vibration signals should be decomposed by improving the ensemble empirical mode decomposition(EEMD) decomposition. Next is calculated the two-dimensional spectral entropy of the decomposed intrinsic mode function(IMF), and the two-dimensional spectrum entropy matrix transformation matrix is made as input feature vector of the support vector machine to identify mechanical condition of the circuit breaker. The last, the experiments show that vibration signals and acoustic signals joint complex analysis effectively improve diagnostic accuracy and practicality of high voltage circuit breaker mechanical fault diagnosis.
[1] 孙来军, 胡晓光, 纪延超. 基于支持向量机的高压断路器机械状态分类[J]. 电工技术学报, 2006, 08: 53-58. Sun Laijun, Hu Xiaoguang, Ji Yanchao. Mechanical fault classification of high voltage circuit breakers based on support vector machine[J]. Transactions of China Electrometrical Society, 2006, 08: 53-58. [2] 吴振升, 王玮, 黄梅, 等. 基于相空间重构的高压断路器振动信号特征分析[J]. 现代电力, 2006, 23(1): 10-14. Wu Zhensheng, Wang Wei, Huang Mei, et al. Analysis of characteristics of vibration signals in high-voltage circuit breakers based on phase space reconstruc- tion[J]. Modern Electric Power, 2006, 23(1): 10-14. [3] 常广, 张振乾, 王毅. 高压断路器机械故障振动诊断综述[J]. 高压电器, 2011, 8(8): 85-89. Chang Guang, Zhang Zhenqian, Wang Yi. Review on mechanical fault diagnosis of high-voltage circuit breakers based on vibration diagnosis[J]. High Voltage Apparatus, 2011, 8(8): 85-89. [4] 陈涛. 一种新的支持向量机混合集成算法[J]. 科学技术与工程, 2012, 12(21): 5312-5315. Chen Tao. A new hybrid SVM ensemble algorithm[J]. Science Technology and Engineering, 2012, 12(21): 5312-5315. [5] Meng Yongpeng, Jia Shenli, Shi Zongqian, et al. The detection of the closing moments of a vacuum circuit breaker by vibration analysis[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 652-658. [6] 赵海龙, 王芳, 胡晓光. 小波包一能量谱在高压断路器机械故障诊断中的应用[J]. 电网技术, 2004, 28(6): 46-48. Zhao Hailong, Wang Fang, Hu Xiaoguang. Application of wavelet packet-energy spectrum mechanical fault diagnosis of high voltage circuit breakers[J]. Power System Technology, 2004, 28(6): 46-48. [7] 王增才, 王树梁, 任锴胜, 等. 基于 EEMD 的提升机天轮轴承故障诊断方法[J]. 煤炭学报, 2012, 37(4): 689-694. Wang Zengcai, Wang Shuliang, Ren Kaisheng, et al. Research on the method of hoist head sheave bearing fault diagnosis based on EEMD[J]. Journal of China Coal Society, 2012, 37(4): 689-694. [8] 董绍江, 汤宝平, 张焱. 基于最优匹配跟踪算法的单通道机械信号盲源分离[J]. 振动工程学报, 2012, 25(6): 724-731. Dong Shaojiang, Tang Baoping, Zhang Yan. Blind source separation of single-channel mechanical signal based on optimal matching pursuit algorithm[J]. Journal of Vibration Engineering, 2012, 25(6): 724-731. [9] Lei Yaguo, He Zhengjia, Zi Yanyang. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23: 1327-1338. [10] 李建鹏. 基于振—声联合分析的高压断路器机械故障诊断研究[D]. 保定: 华北电力大学, 2012. [11] Shen H, Jegelka S, Gretton A. Fast kernel-based independent component analysis[J]. IEEE Transactions on Signal Process, 2009, 57(9): 202-857.