[1] 新华社. 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. 北京, 中国: 新华社, 2020[2021-07-21]. http://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.
[2] 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统: 贡献、关键技术与挑战[J]. 工程科学与技术, 2022(1): 47-59.
Xiao Xianyong, Zheng Zixuan.New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022(1): 47-59.
[3] 盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072-3084.
Sheng Gehao, Qian Yong, Luo Lingen, et al.Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072-3084.
[4] Khan S, Yairi T.A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265.
[5] Johnson S B, Gormley T J, Kessler S S, et al.System health management with aerospaoce applications[M]. West Sussex: John Wiley & Sons, Inc, 2011.
[6] Carvalho A, Cormenzana M L, Furuta H, et al.CIGRÉ technical brochure No. 512: final report of the 2004-2007 international enquiry on reliability of high voltage equipment, part 2 reliability of high voltage equipment[M]. Paris: CIGRE, 2012.
[7] 国家电网有限公司设备管理部. 构建基于“大云物移智”等现代信息通信技术的智能运检体系[J]. 电力设备管理, 2019(4): 26-27.
State Grid Co.Ltd. Constructing a intelligent trans- portation inspection system based on modern information and communication technologies such as “BCIMS”[J]. Electric Power Equipment Management, 2019(4): 26-27.
[8] Sullivan G, Pugh R, Melendez A P, et al.Operations & maintenance best practices—a guide to achieving operational efficiency[R]. Richland: Pacific Northwest National Lab, 2010.
[9] 寇伟. 加快推进“三型两网”建设促进电力工业高质量发展[J]. 电力设备管理, 2019(6): 13.
Kou Wei.Accelerate the construction of “three types and two networks” to promote the high quality development of the power industry[J]. Electric Power Equipment Management, 2019(6): 13.
[10] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1): 1-8.
Xue Yusheng, Lai Yening.Integration of macro energy thinking and big data thinking part one big data and power big data[J]. Automation of Electric Power Systems, 2016, 40(1): 1-8.
[11] Miao Qiang.Remaining useful life prediction of lithium-ion battery with unscented particle filter technique[J]. Microelectronics Reliability, 2013, 53(6): 805-810.
[12] 孙曙光, 张强, 杜太行, 等. 基于分合闸线圈电流的万能式断路器故障诊断[J]. 仪器仪表学报, 2018, 39(2): 130-140.
Sun Shuguang, Zhang Qiang, Du Taihang, et al.Fault diagnosis for conventional circuit breaker based on switching coil current[J]. Chinese Journal of Scien- tific Instrument, 2018, 39(2): 130-140.
[13] 李劲彬, 全江涛, 陈隽, 等. 基于分合闸线圈电流的某换流站开关故障分析[J]. 高压电器, 2015, 51(2): 141-145.
Li Jinbin, Quan Jiangtao, Chen Jun, et al.Fault analysis of circuit breaker in a converter station based on switching coil currents[J]. High Voltage Apparatus, 2015, 51(2): 141-145.
[14] Guo Jiao, Chen Jie, Li Ting, et al.An online monitoring scheme for circuit breakers contact system[M]. Singapore: Springer Singapore, 2020.
[15] 常广, 王毅. 高压断路器机械状态在线监测装置的研究[J]. 高压电器, 2003, 39(2): 44-46.
Chang Guang, Wang Yi.An on-line mechanical condition monitoring device for high voltage circuit breakers[J]. High Voltage Apparatus, 2003, 39(2): 44-46.
[16] 郭娇. 开关类设备寿命预测方法研究[D]. 北京: 北京交通大学, 2020.
[17] 王天泽, 陈尔东, 吉小军. 断路器分合闸线圈电流信号及其特征点采集系统设计[J]. 仪表技术与传感器, 2021(10): 47-51, 64.
Wang Tianze, Chen Erdong, Ji Xiaojun.Design of circuit breaker opening and closing coil current signal and characteristic point acquisition system[J]. Instrument Technique and Sensor, 2021(10): 47-51, 64.
[18] 何志鹏, 赵虎. 微型断路器电寿命评估[J]. 电工技术学报, 2022, 37(4): 1031-1040.
He Zhipeng, Zhao Hu.Electrical lifespan evaluation of miniature circuit breakers[J]. Transactions of China Electrotechnical Society, 2022, 37(4): 1031-1040.
[19] 李博, 彭振东, 沙新乐, 等. 混合直流断路器自然换流过程中弧压的测量及建模[J]. 船电技术, 2019, 39(2): 45-48.
Li Bo, Peng Zhendong, Sha Xinle, et al.Measurement and modeling of vacuum arc voltage in the natural- commutate of hybrid DC circuit breaker[J]. Marine Electric & Electronic Engineering, 2019, 39(2): 45-48.
[20] 李博, 任志刚, 张少华, 等. 一种高压直流真空断路器的双向弧压测量装置及方法: CN113791340A[P].2021-12-14.
[21] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215.
Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215.
[22] 王继锋, 唐文虎, 季天瑶. 基于振动信号的SF6高压断路器操动机构状态监测[J]. 高压电器, 2017, 53(9): 53-59, 65.
Wang Jifeng, Tang Wenhu, Ji Tianyao.On-line condition monitoring of operating mechanism for SF6 high voltage circuit breakers based on vibration signals[J]. High Voltage Apparatus, 2017, 53(9): 53-59, 65.
[23] 陈北. 基于振动信号的低压断路器故障诊断技术研究[D]. 北京: 北京交通大学, 2021.
[24] 张瑶, 罗林根, 王辉, 等. 基于MPSO-MLE的变电站设备异常声源定位方法[J]. 高电压技术, 2020, 46(9): 3145-3153.
Zhang Yao, Luo Lingen, Wang Hui, et al.Method of locating abnormal acoustic source of substation equipment based on MPSO-MLE[J]. High Voltage Engineering, 2020, 46(9): 3145-3153.
[25] 周南, 罗林根, 黄辉, 等. 基于虚拟阵列扩展的特高频多源局部放电DOA估计方法[J]. 高电压技术, 2019, 45(5): 1551-1558.
Zhou Nan, Luo Lingen, Huang Hui, et al.Ultra-high frequency multi-source partial discharge direction of arrival estimation method based on virtual array extension[J]. High Voltage Engineering, 2019, 45(5): 1551-1558.
[26] 杨元威, 关永刚, 陈士刚, 等. 基于声音信号的高压断路器机械故障诊断方法[J]. 中国电机工程学报, 2018, 38(22): 6730-6737.
Yang Yuanwei, Guan Yonggang, Chen Shigang, et al.Mechanical fault diagnosis method of high voltage circuit breaker based on sound signal[J]. Proceedings of the CSEE, 2018, 38(22): 6730-6737.
[27] 孙玉伟, 罗林根, 陈敬德, 等. 含噪背景下基于盲源分离与NSVDD的断路器机械故障诊断方法[J]. 高电压技术, 2022, 48(3): 1104-1112.
Sun Yuwei, Luo Lingen, Chen Jingde, et al.Mechanical fault diagnosis method of circuit breaker based on blind source separation and NSVDD under noisy background[J]. High Voltage Engineering, 2022, 48(3): 1104-1112.
[28] 李德阁, 武建文, 马速良, 等. 基于行程信息的断路器弹簧故障程度诊断[J]. 高压电器, 2018, 54(4): 20-27.
Li Dege, Wu Jianwen, Ma Suliang, et al.Fault degree diagnosis of circuit breaker spring based on travel signal[J]. High Voltage Apparatus, 2018, 54(4): 20-27.
[29] 白云飞, 王代远, 朱庆洋, 等. 基于合闸行程曲线的12kV真空断路器合闸速度在线监测研究[J]. 高压电器, 2021, 57(10): 59-65, 76.
Bai Yunfei, Wang Daiyuan, Zhu Qingyang, et al.Study on on-line monitoring of closing speed for 12kV vacuum circuit breaker based on closing stroke curve[J]. High Voltage Apparatus, 2021, 57(10): 59-65, 76.
[30] 谭佳明, 陈玲玲, 蒋佳成, 等. 交流中压真空断路器机械特性在线监测装置的研制[J]. 高压电器, 2020, 56(7): 69-76.
Tan Jiaming, Chen Lingling, Jiang Jiacheng, et al.Development of on-line monitoring device for mechanical characteristics of AC medium voltage vacuum circuit breaker[J]. High Voltage Apparatus, 2020, 56(7): 69-76.
[31] 黄新波, 陶晨, 刘斌. 智能断路器机械特性在线监测技术和状态评估[J]. 高压电器, 2015, 51(3): 129-134, 139.
Huang Xinbo, Tao Chen, Liu Bin.On-line monitoring technology of mechanical properties and state evaluation method for intelligent circuit breaker[J]. High Voltage Apparatus, 2015, 51(3): 129-134, 139.
[32] 张森林. GIS接触电阻与温升关系研究[D]. 北京: 华北电力大学, 2015.
[33] 邱巍巍. 红外测温技术应用于变电站图像监控系统的研究[D]. 保定: 华北电力大学, 2006.
[34] 吴瑞文, 王珍英, 吴瑞春, 等. 变电所开关柜在线测温装置的研制[J]. 电工技术, 2014(11): 39-40.
Wu Ruiwen, Wang Zhenying, Wu Ruichun, et al.Development of on-line temperature measuring device for substation switch cabinet[J]. Electric Engineering, 2014(11): 39-40.
[35] 侯磊. 10kV高压开关柜无线测温技术研究[D]. 厦门: 厦门大学, 2014.
[36] 崔建顺. 开关柜断路器触头温度采集技术研究与装置开发[D]. 南京: 东南大学, 2017.
[37] 陈新岗, 马骏, 赵唐, 等. 基于声表面波的智能断路器温度监测系统[J]. 仪表技术与传感器, 2017(11): 37-40.
Chen Xingang, Ma Jun, Zhao Tang, et al.Tempera- ture monitoring system of intelligent circuit breaker based on surface acoustic wave[J]. Instrument Tech- nique and Sensor, 2017(11): 37-40.
[38] 彭汉华. 10kV开关柜在线测温系统的研究[D]. 广州: 华南理工大学, 2017.
[39] 马速良, 武建文, 袁洋, 等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报, 2020, 35(增刊2): 421-431.
Ma Suliang, Wu Jianwen, Yuan Yang, et al.Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 421-431.
[40] 赵书涛, 张佩, 申路, 等. 高压断路器振声联合故障诊断方法[J]. 电工技术学报, 2014, 29(7): 216-221.
Zhao Shutao, Zhang Pei, Shen Lu, et al.Vibration and acoustic joint mechanical fault diagnosis method of high voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 216-221.
[41] 王静君, 王飞, 杨元威, 等. 短时能量法在断路器机械振动信号分析中的应用[J]. 高压电器, 2017, 53(12): 14-19.
Wang Jingjun, Wang Fei, Yang Yuanwei, et al.Application of short-time energy method in the analysis of mechanical vibration signal of circuit breaker[J]. High Voltage Apparatus, 2017, 53(12): 14-19.
[42] 万书亭, 马晓棣, 陈磊, 等. 基于振动信号短时能熵比与DTW的高压断路器状态评估及故障诊断[J]. 高电压技术, 2020, 46(12): 4249-4257.
Wan Shuting, Ma Xiaodi, Chen Lei, et al.State evaluation and fault diagnosis of high-voltage circuit breaker based on short-time energy entropy ratio of vibration signal and DTW[J]. High Voltage Engin- eering, 2020, 46(12): 4249-4257.
[43] Daubechies I.The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005.
[44] Mallat S G.A theory for multiresolution signal decomposition: the wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 1989, 11(7): 674-693.
[45] 鄢仁武, 林穿, 高硕勋, 等. 基于小波时频图和卷积神经网络的断路器故障诊断分析[J]. 振动与冲击, 2020, 39(10): 198-205.
Yan Renwu, Lin Chuan, Gao Shuoxun, et al.Fault diagnosis and analysis of circuit breaker based on wavelet time-frequency representations and con- volution neural network[J]. Journal of Vibration and Shock, 2020, 39(10): 198-205.
[46] 钟建英, 刘洋, 林莘, 等. 基于振动信号特征的高压断路器机械故障诊断技术研究[J]. 高压电器, 2013, 49(9): 49-54.
Zhong Jianying, Liu Yang, Lin Xin, et al.Mechanical fault diagnosis technology research of high-voltage circuit breaker based on the vibration signal charac- teristic[J]. High Voltage Apparatus, 2013, 49(9): 49-54.
[47] 王俊波, 武利会, 罗容波, 等. 基于小波变换—振动起始时刻分析的高压断路器故障诊断方法[J]. 高压电器, 2020, 56(6): 211-217.
Wang Junbo, Wu Lihui, Luo Rongbo, et al.Fault diagnosis method of high voltage circuit breaker based on wavelet transform-vibration start time analysis[J]. High Voltage Apparatus, 2020, 56(6): 211-217.
[48] 缪希仁, 王燕. 低压断路器振动特性分析与合闸同期性研究[J]. 电工技术学报, 2013, 28(6): 81-85.
Miao Xiren, Wang Yan.Vibration characteristic analysis and closing synchronization research of low voltage circuit breakers[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 81-85.
[49] 缪希仁, 吴晓梅, 石敦义, 等. 采用HHT振动分析的低压断路器合闸同期辨识[J]. 电工技术学报, 2014, 29(11): 154-161.
Miao Xiren, Wu Xiaomei, Shi Dunyi, et al.Switching synchronism identification of low voltage circuit breaker utilizing HHT analysis to vibration signal[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 154-161.
[50] 陈伟根, 邓帮飞, 杨彬. 基于振动信号经验模态分解及能量熵的高压断路器故障识别[J]. 高压电器, 2009, 45(2): 90-93, 96.
Chen Weigen, Deng Bangfei, Yang Bin.Fault recog- nition for high voltage circuit breaker based on EMD of vibration signal and energy entropy characteri- stic[J]. High Voltage Apparatus, 2009, 45(2): 90-93, 96.
[51] 刘荣海, 豆龙江, 万书亭, 等. 基于EEMD样本熵和支持向量机的高压断路器故障诊断[J]. 华北电力大学学报(自然科学版), 2018, 45(2): 82-88.
Liu Ronghai, Dou Longjiang, Wan Shuting, et al.Fault diagnosis of high voltage circuit breaker based on EEMD sample entropy and support vector machine[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45(2): 82-88.
[52] 孙曙光, 于晗, 杜太行, 等. 基于多特征融合与改进QPSO-RVM的万能式断路器故障振声诊断方法[J]. 电工技术学报, 2017, 32(19): 107-117.
Sun Shuguang, Yu Han, Du Taihang, et al.Vibration and acoustic joint fault diagnosis of conventional circuit breaker based on multi-feature fusion and improved QPSO-RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 107-117.
[53] 黄南天, 方立华, 王玉强, 等. 基于局域均值分解和支持向量数据描述的高压断路器机械状态监测[J]. 电工电能新技术, 2017, 36(1): 73-80.
Huang Nantian, Fang Lihua, Wang Yuqiang, et al.Machinery condition monitoring of high voltage circuit breakers based on local mean decomposition and support vector data description[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(1): 73-80.
[54] Obarcanin K, Lacevic B, Ermidoro M.A high- voltage circuit breaker condition assessment method using the vibration fingerprint based on VMD-EM method[C]//2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 2020: 1-6.
[55] Yang Qiuyu, Ruan Jiangjun, Zhuang Zhijian.Fault diagnosis for circuit-breakers using adaptive chirp mode decomposition and attractor's morphological characteristics[J]. Mechanical Systems and Signal Processing, 2020, 145: 106921.
[56] 辛忠良, 霍明霞, 贾鹏举, 等. 基于经验小波变换和相关向量机的断路器机械故障诊断[J]. 电测与仪表, 2019, 56(13): 97-103.
Xin Zhongliang, Huo Mingxia, Jia Pengju, et al.Circuitbreaker mechanical fault diagnosis based on empirical wavelet transform and relevance vector machine[J]. Electrical Measurement & Instrumentation, 2019, 56(13): 97-103.
[57] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236.
Sun Yihang, Wu Jianwen, Lian Shijun, et al.Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transactions of China Elec- trotechnical Society, 2014, 29(3): 228-236.
[58] 刘伟鹏, 张国钢, 刘亚魁, 等. 基于主成分分析和支持向量机的高压断路器机械状态识别方法[J]. 高压电器, 2020, 56(9): 267-272, 278.
Liu Weipeng, Zhang Guogang, Liu Yakui, et al.Mechanical status identification of high voltage cir- cuit breakers based on principal component analysis and support vector machines[J]. High Voltage Apparatus, 2020, 56(9): 267-272, 278.
[59] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号时频图像识别的高压断路器分闸缓冲器状态评估[J]. 电工技术学报, 2019, 34(19): 4048-4057.
Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Opening damper condition evaluation based on vibration time-frequency images for high-voltage cir- cuit breakers[J]. Transactions of China Electro- technical Society, 2019, 34(19): 4048-4057.
[60] 梅飞, 梅军, 郑建勇, 等. 粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用[J]. 中国电机工程学报, 2013, 33(36): 134-141, 19.
Mei Fei, Mei Jun, Zheng Jianyong, et al.Application of particle swarm fused KFCM and classification model of SVM for fault diagnosis of circuit breaker[J]. Proceedings of the CSEE, 2013, 33(36): 134-141, 19.
[61] 林琳, 陈志英. 基于粗糙集神经网络和振动信号的高压断路器机械故障诊断[J]. 电工技术学报, 2020, 35(增刊1): 277-283.
Lin Lin, Chen Zhiying.Mechanical fault diagnosis of high voltage circuit breakers based on rough set neural networks and vibration signals[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 277-283.
[62] Setiawan A, Adiati W, Prasojo R A.An approach of the analytic hierarchy process to acquire the weighting factor of high voltage circuit breaker health index[C]//2020 International Conference on Tech- nology and Policy in Energy and Electric Power (ICT-PEP), Bandung, Indonesia, 2020: 317-322.
[63] 黄建, 胡晓光, 巩玉楠, 等. 高压断路器机械故障诊断专家系统设计[J]. 电机与控制学报, 2011, 15(10): 43-49.
Huang Jian, Hu Xiaoguang, Gong Yunan, et al.Machinery fault diagnosis expert system for high voltage circuit breaker[J]. Electric Machines and Control, 2011, 15(10): 43-49.
[64] Geng Xinbo, Xie Le.Learning the LMP-load coupling from data: a support vector machine based app- roach[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1127-1138.
[65] 杨秋玉, 阮江军, 黄道春, 等. 基于VMD-Hilbert边际谱能量熵和SVM的高压断路器机械故障诊断[J]. 电机与控制学报, 2020, 24(3): 11-19.
Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Mechanical fault diagnosis for high voltage circuit breakers based on VMD-Hilbert marginal spectrum energy entropy and SVM[J]. Electric Machines and Control, 2020, 24(3): 11-19.
[66] Dineva A, Mosavi A, Faizollahzadeh A S, et al.Review of soft computing models in design and control of rotating electrical machines[J]. Energies, 2019, 12(6): 1049.
[67] 徐建源, 张彬, 林莘, 等. 能谱熵向量法及粒子群优化的RBF神经网络在高压断路器机械故障诊断中的应用[J]. 高电压技术, 2012, 38(6): 1299-1306.
Xu Jianyuan, Zhang Bin, Lin Xin, et al.Application of energy spectrum entropy vector method and RBF neural networks optimized by the particle swarm in high-voltage circuit breaker mechanical fault diag- nosis[J]. High Voltage Engineering, 2012, 38(6): 1299-1306.
[68] 刘艳, 康海贵, 孙敏. 基于遗传算法的模糊优选神经网络路面性能评价模型[J]. 大连理工大学学报, 2010, 50(1): 117-122.
Liu Yan, Kang Haigui, Sun Min.Genetic algorithm- based fuzzy optimization neural network model for pavement performance evaluation[J]. Journal of Dalian University of Technology, 2010, 50(1): 117-122.
[69] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20-30.
Sun Shuguang, Yu Han, Du Taihang, et al.Diagnosis on the switching fault of conventional circuit breaker based on vibration signal sample entropy and RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20-30.
[70] 王昱皓, 武建文, 马速良, 等. 基于核主成分分析- SoftMax的高压断路器机械故障诊断技术研究[J]. 电工技术学报, 2020, 35(增刊1): 267-276.
Wang Yuhao, Wu Jianwen, Ma Suliang, et al.Mechanical fault diagnosis research of high voltage circuit breaker based on kernel principal component analysis and SoftMax[J]. Transactions of China Electrotechnical Society, 2020, 35(S1): 267-276.
[71] Boyaci A, Becker O, Amihai I.Vibration monitoring for medium-voltage circuit breaker drives using arti- ficial intelligence[C]//CIRED 2021-The 26th Inter- national Conference and Exhibition on Electricity Distribution, Online Conference, 2021: 1-5.
[72] 邵阳, 武建文, 马速良, 等. 用于高压断路器机械故障诊断的AM-ReliefF特征选择下集成SVM方法[J]. 中国电机工程学报, 2021, 41(8): 2890-2901.
Shao Yang, Wu Jianwen, Ma Suliang, et al.Integrated SVM method with AM-ReliefF feature selection for mechanical fault diagnosis of high voltage circuit breakers[J]. Proceedings of the CSEE, 2021, 41(8): 2890-2901.
[73] Ma Suliang, Chen Mingxuan, Wu Jianwen, et al.High-voltage circuit breaker fault diagnosis using a hybrid feature transformation approach based on random forest and stacked autoencoder[J]. IEEE Transactions on Industrial Electronics, 2018, 66(12): 9777-9788.
[74] 任浩, 屈剑锋, 柴毅, 等. 深度学习在故障诊断领域中的研究现状与挑战[J]. 控制与决策, 2017, 32(8): 1345-1358.
Ren Hao, Qu Jianfeng, Chai Yi, et al.Deep learning for fault diagnosis: the state of the art and challenge[J]. Control and Decision, 2017, 32(8): 1345-1358.
[75] Sun Shuguang, Zhang Tingting, Li Qin, et al.Fault diagnosis of conventional circuit breaker contact system based on time—frequency analysis and improved AlexNet[J]. IEEE Transactions on Instru- mentation and Measurement, 2021, 70: 1-12.
[76] 孙曙光, 李勤, 杜太行, 等. 基于一维卷积神经网络的低压万能式断路器附件故障诊断[J]. 电工技术学报, 2020, 35(12): 2562-2573.
Sun Shuguang, Li Qin, Du Taihang, et al.Fault diagnosis of accessories for the low voltage con- ventional circuit breaker based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2562-2573.
[77] 孙曙光, 张强, 杜太行, 等. 基于振动信号的低压万能式断路器分合闸故障程度评估方法的研究[J]. 中国电机工程学报, 2017, 37(18): 5473-5482, 5547.
Sun Shuguang, Zhang Qiang, Du Taihang, et al.Study of evaluation method for low voltage conventional circuit breaker switching fault degree based on vibration signal[J]. Proceedings of the CSEE, 2017, 37(18): 5473-5482, 5547.
[78] 杨秋玉, 王栋, 阮江军, 等. 基于振动信号的断路器机械零部件故障程度识别[J]. 电工技术学报, 2021, 36(13): 2880-2892.
Yang Qiuyu, Wang Dong, Ruan Jiangjun, et al.Fault severity estimation method for mechanical parts in circuit breakers based on vibration analysis[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2880-2892.
[79] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495.
Peng Yu, Liu Datong.Data-driven prognostics and health management: a review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495.
[80] Li Naipeng, Lei Yaguo, Lin Jing, et al.An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7762-7773.
[81] Malhi A, Yan Ruqiang, Gao R.Prognosis of defect propagation based on recurrent neural networks[J]. IEEE Transactions on Instrumentation and Measure- ment, 2011, 60(3): 703-711.
[82] 赵光权, 刘小勇, 姜泽东, 等. 基于深度学习的轴承健康因子无监督构建方法[J]. 仪器仪表学报, 2018, 39(6): 82-88.
Zhao Guangquan, Liu Xiaoyong, Jiang Zedong, et al.Unsupervised health indicator of bearing based on deep learning[J]. Chinese Journal of Scientific Instru- ment, 2018, 39(6): 82-88.
[83] Zhao Shuai, Makis V, Chen Shaowei, et al.Health assessment method for electronic components subject to condition monitoring and hard failure[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(1): 138-150.
[84] Promseela L, Suwanasri C, Saribut S, et al.Risk assessment for power circuit breaker by using failure modes, effects and criticality analysis[C]//Inter- national Conference on Power, Energy and Innov- ations (ICPEI), Chiangmai, Thailand, 2021: 149-152.
[85] Geng Sujie.Research on data-driven method for circuit breaker condition assessment based on back propagation neural network[J]. Computers & Elec- trical Engineering, 2020, 86: 106732.
[86] Zhang Xiang, Zhang Jiaosuo, Gockenbach E, et al.Life management of SF6 circuit breakers based on monitoring and diagnosis[J]. IEEE Electrical Insu- lation Magazine, 2009, 25(3): 21-29.
[87] 段雄英, 赵洋洋, 陈艳霞, 等. 基于Spark的高压断路器机械寿命预测评估[J]. 高压电器, 2020, 56(9): 80-86.
Duan Xiongying, Zhao Yangyang, Chen Yanxia, et al.Spark-based prediction and evaluation of mechanical life for high voltage circuit breakers[J]. High Voltage Apparatus, 2020, 56(9): 80-86.
[88] 刘小勇. 基于深度学习的机械设备退化状态建模及剩余寿命预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[89] Sun Fuqiang, Li Xiaoyang, Liao Haitao, et al.A Bayesian least-squares support vector machine method for predicting the remaining useful life of a microwave component[J]. Advances in Mechanical Engineering, 2017, 9(1): 1-9.
[90] 何成刚. 马尔科夫模型预测方法的研究及其应用[D]. 合肥: 安徽大学, 2011.
[91] 李奎, 李正广, 段宇, 等. 基于Gamma过程的交流接触器剩余电寿命仿真预测[J]. 电测与仪表, 2018, 55(16): 105-111.
Li Kui, Li Zhengguang, Duan Yu, et al.Simulation residual electrical life prediction of AC contactor based on the Gamma process[J]. Electrical Measure- ment & Instrumentation, 2018, 55(16): 105-111.
[92] 刘帼巾, 李想, 王泽, 等. 基于Wiener过程电子式漏电断路器的剩余寿命预测[J]. 电工技术学报, 2022, 37(2): 528-536.
Liu Guojin, Li Xiang, Wang Ze, et al.Remaining life prediction of electronic residual current circuit breaker based on Wiener process[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 528-536.
[93] 司小胜, 胡昌华. 数据驱动的设备剩余寿命预测理论及应用[M]. 北京: 国防工业出版社, 2016.
[94] 孙曙光, 王佳兴, 王景芹, 等. 基于Wiener过程的万能式断路器附件剩余寿命预测[J]. 仪器仪表学报, 2019, 40(2): 26-37.
Sun Shuguang, Wang Jiaxing, Wang Jingqin, et al.Remaining useful life prediction of accessories for the conventional circuit breaker based on Wiener pro- cess[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 26-37.
[95] 孙曙光, 张伟, 王景芹, 等. 基于动作过程振动检测的低压断路器机械寿命预测[J]. 仪器仪表学报, 2020, 41(12): 146-157.
Sun Shuguang, Zhang Wei, Wang Jingqin, et al.Mechanical life prediction of low-voltage circuit breaker based on vibration detection during opera- tion[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 146-157.
[96] 孙曙光, 李勤, 王佳兴, 等. 基于性能退化模型的万能式断路器操作附件实时剩余寿命预测[J]. 仪器仪表学报, 2019, 40(10): 120-129.
Sun Shuguang, Li Qin, Wang Jiaxing, et al.Real-time remaining useful life prediction of operating accesso- ries for the conventional circuit breaker based on performance degradation model[J]. Chinese Journal of Scientific Instrument, 2019, 40(10): 120-129.
[97] 关永刚, 杨元威, 钟建英, 等. 高压断路器机械故障诊断方法综述[J]. 高压电器, 2018, 54(7): 10-19.
Guan Yonggang, Yang Yuanwei, Zhong Jianying, et al.Review on mechanical fault diagnosis methods for high-voltage circuit breakers[J]. High Voltage Apparatus, 2018, 54(7): 10-19.
[98] 陈新岗, 赵唐, 马骏, 等. 基于ZigBee无线组网的真空断路器温度在线监测系统设计[J]. 仪表技术与传感器, 2018(8): 39-42, 72.
Chen Xingang, Zhao Tang, Ma Jun, et al.Design of vacuum circuit breaker temperature online monitoring system based on ZigBee wireless network[J]. Instru- ment Technique and Sensor, 2018(8): 39-42, 72.
[99] Zhou Gang, Han Zhongjie, Fu Jin, et al.Iterative online fault identification scheme for high-voltage circuit breaker utilizing a lost data repair technique[J]. Energies, 2020, 13(13): 3311.
[100] 卢科军, 顾翔翼. 断路器: CN110400727A[P].2019- 11-01.
[101] 李春龙, 黄辉, 梁云, 等. 面向电力传感器的环境能量收集技术发展趋势及面临的挑战[J]. 中国电力, 2021, 54(2): 27-35.
Li Chunlong, Huang Hui, Liang Yun, et al.Power sensor-oriented development and challenges of environmental energy harvesting technologies[J]. Electric Power, 2021, 54(2): 27-35.
[102] 郑春开, 李子平, 廖军, 等. 一种断路器装置: CN214898306U[P].2021-11-26. |