Research Status and Prospect of Condition Based Maintenance Technology for Offshore Wind Turbine Electrical Equipment
Gao Chen1, Zhao Yong1, Wang Deliang2, Cheng Yonghong3, Chen Xiaolu4
1. Xi’an Thermal Power Research Institute Co. Ltd Xi’an 710032 China; 2. Hunan Branch of China Huaneng Group Co. Ltd Changsha 410000 China; 3. Xi’an Jiaotong University Xi’an 710049 China; 4. Jiangsu Clean Energy Branch Huaneng Power International Inc. Nanjing 210008 China
Abstract:The research status of the operation state maintenance technology of offshore wind turbine main electrical equipment is reviewed. The condition monitoring, condition evaluation and maintenance decision-making technologies are introduced, respectively. Furthermore, the future development direction of condition based maintenance technology for offshore wind turbine electrical equipment is summarized. Through a large number of literature studies, in the aspect of condition monitoring, the electrical state monitoring technology of generator and inverter mainly focuses on the analysis of current characteristics, voltage signal and power analysis. Feature parameters are extracted by signal processing methods such as time domain analysis, Fourier transform and wavelet transform. Compared with the large-scale power transformer on land, the electrical condition monitoring technology based on offshore wind turbine transformer is slightly insufficient, and there are less state parameters that can be used for monitoring and extracting. Compared with the traditional physical model and data analysis, neural network model and fuzzy evaluation are still more effective methods in the aspect of condition evaluation. In terms of maintenance decision-making, it is still depended on the traditional fault tree, Markov process and improved Markov process to make decisions. With the development of technology and the accumulation of operation and maintenance experience, the multi parameter monitoring system, the perfect evaluation standard system of component-system-whole machine, the decision technology of comprehensive opportunity maintenance, combined maintenance and scheduling optimization will become the future development direction of offshore wind turbine operation and maintenance field.
高晨, 赵勇, 汪德良, 成永红, 陈晓路. 海上风电机组电气设备状态检修技术研究现状与展望[J]. 电工技术学报, 2022, 37(zk1): 30-42.
Gao Chen, Zhao Yong, Wang Deliang, Cheng Yonghong, Chen Xiaolu. Research Status and Prospect of Condition Based Maintenance Technology for Offshore Wind Turbine Electrical Equipment. Transactions of China Electrotechnical Society, 2022, 37(zk1): 30-42.
[1] Willis D J, Niezrecki C, Kuchma D, et al.Wind energy research: state-of-the-art and future research directions[J]. Renewable Energy, 2018, 125: 133-154. [2] Kang Jichuan, Sobral J, Soares C G.Review of condition-based maintenance strategies for offshore wind energy[J]. Journal of Marine Science and Application, 2019, 18(1): 1-16. [3] Lu Yang, Sun Liping, Zhang Xinyue, et al.Condition based maintenance optimization for offshore wind turbine considering opportunities based on neural network approach[J]. Applied Ocean Research, 2018, 74(1): 69-79. [4] Zhang Chen, Gao Wei, Yang Tao, et al.Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management[J]. Renewable Energy, 2019, 133: 703-711. [5] 绳晓玲. 叶轮不平衡故障下双馈风力发电机运行特性分析及控制研究[D]. 北京: 华北电力大学, 2017. [6] Wang Tianyang, Han Qinkai, Chu Fulei, et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review[J]. Mechanical Systems and Signal Processing, 2019, 126: 662-685. [7] Liu Zepeng, Zhang Long.A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J]. Measurement, 2020, 149: 107002. [8] Estefania A, Sergio M M, Andrés H E, et al.Wind turbine reliability: a comprehensive review towards effective condition monitoring development[J]. Applied Energy, 2018, 228: 1569-1583. [9] 张路朋. 风电机组的状态机会维修策略[D]. 北京:华北电力大学. 2015. [10] Jin Tongdan, Mechehoul M.Minimize production loss in device testing via condition-based equipment maintenance[J]. IEEE Transactions on Automation Science and Engineering, 2010, 7(4): 958-963. [11] Varvara M, Athanasios J K.Techno-economic optimisation of offshore wind farms based on life cycle cost analysis on the UK[J]. Renewable Energy, 2019, 132: 439-454. [12] Lerch M, De-Prada-Gil M, Molins C, et al. Sensitivity analysis on the levelized cost of energy for floating offshore wind farms[J]. Sustainable Energy Technologies and Assessments, 2018, 30: 77-90. [13] Qiao Wei, Lu Dingguo.A survey on wind turbine condition monitoring and fault diagnosis—part I: components and subsystems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6536-6545. [14] Scheu M N, Tremps L, Smolka U, et al.A systematic failure mode effects and criticality analysis for offshore wind turbine systems towards integrated condition based maintenance strategies[J]. Ocean Engineering, 2019, 176: 118-133. [15] 郝东晏. 永磁直驱式风力发电机系统的仿真与建模分析[D]. 石家庄: 河北科技大学, 2018. [16] Honrubia E A, Gómez L E, Fortmann J, et al.Generic dynamic wind turbine models for power system stability analysis: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1939-1952. [17] 傅质馨, 袁越. 海上风电机组状态监控技术研究现状与展望[J]. 电力系统自动化, 2012, 36(21): 121-129. Fu Zhixin, Yuan Yue.Status and prospects on condition monitoring technologies of offshore wind turbine[J]. Automation of Electric Power Systems, 2012, 36(21): 121-129. [18] 张登峰. 风力发电设备状态评价系统设计[D]. 郑州: 郑州大学, 2011. [19] Mérigaud A, Ringwood J.Condition-based maintenance methods for marine renewable energy[J]. Renewable and Sustainable Energy Reviews, 2016, 66: 53-78. [20] Abadi M B, Cruz S, Goncalves A P, et al.Inter-turn fault detection in doubly-fed induction generators for wind turbine applications using the stator reactive power analysis[C]//3rd Renewable Power Generation Conference, Naples, Italy, 2014, 8: 29. [21] Henao H, Capolino G A, Fernandez C M, et al.Trends in fault diagnosis for electrical machines: a review of diagnostic techniques[J]. IEEE Industrial Electronics Magazine, 2014, 8(2): 31-42. [22] 马宏忠, 张志艳, 张志新, 等. 双馈异步发电机定子匝间短路故障诊断研究[J]. 电机与控制学报, 2011, 15(11): 50-54. Ma Hongzhong, Zhang Zhiyan, Zhang Zhixin, et al.Research on DFIG stator winding interturn short circuit fault[J]. Electric Machines and Control, 2011, 15(11): 50-54. [23] 魏书荣, 符杨, 马宏忠. 双馈风力发电机定子绕组匝间短路诊断与实验研究[J]. 电力系统保护与控制, 2010, 38(11): 25-28. Wei Shurong, Fu Yang, Ma Hongzhong.Stator winding inter-turn short-circuit diagnosis and experimental research on doubly-fed wind generator[J]. Power System Protection and Control, 2010, 38(11): 25-28. [24] 马宏忠, 张艳, 魏海增, 等. 基于转子平均瞬时功率的双馈异步发电机定子绕组匝间短路故障诊断[J]. 电力自动化设备, 2018, 38(4): 151-156. Ma Hongzhong, Zhang Yan, Wei Haizeng, et al.Diagnosis of stator winding inter-turn short circuit in DFIG based on instantaneous average power in rotor side[J]. Electric Power Automation Equipment, 2018, 38(4): 151-156. [25] 于海波. 双馈异步风力发电机定子匝间短路故障诊断研究[D]. 北京: 华北电力大学, 2015. [26] Zaher A, McArthur S, Infield D, et al. Online wind turbine fault detection through automated SCADA data analysis[J]. Wind Energy, 2009, 12(6): 574-593. [27] Yang Wenxian, Tavner P J, Wilkinson M.Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. IET Renewable Power Generation, 2009, 3(1): 1-11. [28] Martin R G, Joan P L, Vicente C A, et al.Diagnosis of induction machines under non-stationary conditions: concepts and tools[C]//2013 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD 2013), Paris, France, 2013: 220-231. [29] Watson S, Xiang B J, Yang Wenxian, et al.Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 715-721. [30] 杭俊. 永磁直驱风力发电机组故障诊断技术研究[D]. 南京: 东南大学, 2016. [31] Kim K H.Simple online fault detecting scheme for short-circuited turn in a PMSM through current harmonic monitoring[J]. IEEE Transactions on Industrial Electronics, 2011, 58(6): 2565-2568. [32] Yassa N, M'hemed R. Modeling and detecting the stator winding inter turn fault of permanent magnet synchronous motors using stator current signature analysis[J]. Mathematics and Computers in Simulation, 2020, 167: 325-339. [33] Ebrahimi B M, Faiz J.Diagnosis and performance analysis of three-phase permanent magnet synchronous motors with static, dynamic and mixed eccentricity[J]. IET Electric Power Applications, 2010, 4(1): 53-66. [34] Ebrahimi B M, Faiz J, Araabi B N.Pattern identification for eccentricity fault diagnosis in permanent magnet synchronous motors using stator current monitoring[J]. IET Electric Power Applications, 2010, 4(6): 418-430. [35] Ebrahimi B M, Faiz J, Roshtkhari M J.Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4727-4739. [36] Rosero J, Romeral L, Ortega J A, et al.Demagnetization fault detection by means of Hilbert-Huang transform of the stator current Decomposition in PMSM[C]//2008 IEEE International Symposium on Industrial Electronics, Cambridge, England, 2008: 1-5. [37] Riba R, Garcia E A, Romeral L, et al.Detection of demagnetization faults in permanent-magnet synchronous motors under nonstationary conditions[J]. IEEE Transactions on Magnetics, 2009, 45(7): 2961-2969. [38] Rosero J A, Romeral L, Ortega J A, et al.Short-circuit detection by means of empirical mode decomposition and Wigner-Ville distribution for PMSM running under dynamic condition[J]. IEEE Transactions on Industrial Electronics, 2009, 56(11): 4534-4547. [39] Aubert B, Regnier J, Caux S, et al.Kalman-filter-based indicator for online interturn short circuits detection in permanent-magnet synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3):1921-1930. [40] 王栋. 双馈感应发电机绕组匝间短路故障分析[D]. 保定: 华北电力大学, 2014. [41] 王德艳. 双馈式风力发电机定子绕组匝间短路的故障特征分析[D]. 保定: 华北电力大学, 2012. [42] 李辉, 刘盛权, 冉立, 等. 大功率并网风电机组变流器状态监测技术综述[J]. 电工技术学报, 2016, 31(8): 1-10. Li Hui, Liu Shengquan, Ran Li, et al.Overview of condition monitoring technologies of power converter for high power grid-connected wind turbine generator system[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 1-10. [43] Wang Huai, Liserre M, Blaabjerg F.Toward reliable power electronics: challenges, design tools, and opportunities[J]. IEEE Industrial Electronics Magazine, 2013, 7(2): 17-26. [44] 姚芳, 胡洋, 李铮, 等. 基于结温监测的风电IGBT热安全性和寿命耗损研究[J]. 电工技术学报, 2018, 33(9): 2024-2033. Yao Fang, Hu Yang, Li Zheng, et al.Study on thermal safety and lifetime consumption of IGBT in wind power converters based on junction temperature monitoring[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 2024-2033. [45] Yang Shaoyong, Xiang Dawei, Bryant A, et al.Condition monitoring for device reliability in power electronic converters: a review[J]. IEEE Transactions on Power Electronics, Cambridge, UK, 2010, 25(11): 2734-2752. [46] 杨姮. 风电并网变流器故障模拟实验平台设计与实现[D]. 重庆: 重庆大学, 2018. [47] 陈昭宇. 基于知识库的变流器故障诊断研究[D]. 上海: 上海交通大学, 2013. [48] Mendes A M S, Cardoso A J M. Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park's vector approach[C]// IEEE International Electric Machines and Drives Conference, Seattle, USA, 1999: 704-706. [49] Lamb J, Mirafzal B.Open-circuit IGBT fault detection and location isolation for cascaded multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4846-4856. [50] 于泳, 蒋生成, 杨荣峰, 等. 变频器IGBT开路故障诊断方法[J]. 中国电机工程学报, 2011, 31(9): 30-35. Yu Yong, Jiang Shengcheng, Yang Rongfeng, et al.IGBT open circuit fault diagnosis method for inverter[J]. Proceedings of the CSEE, 2011, 31(9): 30-35. [51] Sobanski P, Orlowska K T.IGBT open-circuit fault diagnosis based on the current prediction in the line-side AC/DC converter[C]//2017 IEEE International Conference on Industrial Technology, Toronto, Canada, 2017: 113-118. [52] Im W S, Kim J S, Kim J M, et al.Diagnosis methods for IGBT open switch fault applied to 3-phase AC/DC PWM converter[J]. Journal of Power Electronics, 2012, 12(1): 120-127. [53] Xiang Dawei, Ran Li, Tavner P, et al.Condition monitoring power module solder fatigue using inverter harmonic identification[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 235-247. [54] Rothenhagen K, Fuchs F W.Performance of diagnosis methods for IGBT open circuit faults in three phase voltage source inverters for AC variable speed drives[C]//2005 IEEE 11th European Conference on Power Electronics and Applications, Dresden, Germany, 2005: 1-7. [55] Xiang Dawei, Ran Li, Tavner P, et al.Monitoring solder fatigue in a power module using case-above-ambient temperature rise[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2578-2591. [56] 刘建涛, 王治华, 王珂. 不同结构电压源换流器损耗对比分析[J]. 电力系统保护与控制, 2013, 41(6): 105-110. Liu Jiantao, Wang Zhihua, Wang Ke.Comparative analysis of losses of voltage source converters with different structures[J]. Power System Protection and Control, 2013, 41(6): 105-110. [57] 徐铭伟, 周雒维, 杜雄, 等. NPT型IGBT电热仿真模型参数提取方法综述[J]. 电力自动化设备, 2013. 33(1): 134-141. Xu Mingwei, Zhou Luowei, Du Xiong, et al.Review of parameter extraction methodology for electro-thermal simulation model of NPT IGBT[J]. Electric Power Automation Equipment, 2013, 33(1): 134-141. [58] Patil N, Das D, Goebel K, et al.Identification of failure precursor parameters for insulated gate bipolar transistors (IGBTs)[C]//2008 International Conference on Prognostics and Health Management, New York, USA, 2008: 1-5. [59] 孙建建. 双馈风机双PWM变频器的建模及控制策略研究[D]. 北京: 华北电力大学, 2018. [60] 黄涛, 陈民铀, 赖伟, 等. 计及疲劳累积及健康状态的风电变流器可靠性评估模型[J]. 电工技术学报, 2018, 33(20): 4845-4854. Huang Tao, Chen Minyou, Lai Wei, et al.Reliability evaluation model of wind power converter considering fatigue accumulation and health status[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4845-4854. [61] 邹武俊. 风力发电及变频器的仿真与控制研究[D]. 北京: 华北电力大学, 2019. [62] Ma Ke, Bahman A S, Beczkowski S, et al.Complete loss and thermal model of power semiconductors including device rating information[J]. IEEE Transactions on Power Electronics, 2015, 30(5): 2556-2569. [63] 陈根, 蔡旭. 并联型风电变流器故障重构控制[J]. 中国电机工程学报, 2018, 38(15): 4339-4349. Chen Gen, Cai Xu.Fault reconfigurable control for parallel wind power converters[J]. Proceedings of the CSEE, 2018, 38(15): 4339-4349. [64] Wang Wei, Zhang Jinghao, Cheng Ming, et al.Fault-tolerant control of dual three-phase permanent-magnet synchronous machine drives under open-phase faults[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2052-2063. [65] 叶显帅. 风电变压器典型故障分析与研究[D]. 杭州: 浙江工业大学, 2014. [66] 章禹. 变压器健康状态评价及短期增容研究[D]. 杭州: 浙江大学, 2018. [67] Blaabjerg F, Liserre M, Ma Ke.Power electronics converters for wind turbine systems[J]. IEEE Transactions on Industry Applications, 2012, 48(2): 708-719. [68] Singh J, Sood Y R, Jarial R K.Condition monitoring of power transformers bibliography survey[J]. IEEE Electrical Insulation Magazine, 2008, 24(3): 11-25. [69] 郭慧东. 海上风电机群运行状态评价与维修决策[D]. 北京: 北京交通大学, 2018. [70] Yang Wenxian, Court R, Jiang Jiesheng.Wind turbine condition monitoring by the approach of SCADA data analysis[J]. Renewable Energy, 2013, 53: 365-376. [71] Tautz W J, Watson S J.Using SCADA data for wind turbine condition monitoring-a review[J]. IET Renewable Power Generation, 2017, 11(4): 382-394. [72] 严英杰. 基于大数据分析技术的输变电设备状态评估方法研究[D]. 上海: 上海交通大学. 2018. [73] 李刚, 张建付, 文福拴, 等. 计及信息不确定性的风电机组健康状态实时评估方法[J]. 电力系统自动化, 2017, 41(18): 111-117. Li Gang, Zhang Jianfu, Wen Fushuan, et al.Evaluation of real-time health condition for wind turbines considering information uncertainty[J]. Automation of Electric Power Systems, 2017, 41(18): 111-117. [74] 肖桂雨, 向健平, 凌永志, 等. 基于小波神经网络的风力发电机故障预测方法[J]. 电力科学与技术学报, 2019, 34(2): 195-202. Xiao Guiyu, Xiang Jianping, Ling Yongzhi, et al.Prediction of wind turbine faults based on wavelet neural networks[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 195-202. [75] Bangalore P, Tjernberg L B.An approach for self evolving neural network based algorithm for fault prognosis in wind turbine[C]//2013 IEEE Grenoble PowerTech Conference, Grenoble, France, 2013: 1-6. [76] Ju Lincang, Song Dekuan, Shi Beibei, et al.Fault predictive diagnosis of wind turbine based on LM arithmetic of artificial neural network theory[C]//2011 Seventh International Conference on Natural Computation, Shanghai, China, 2011: 575-579. [77] Kusiak A, Verma A.Analyzing bearing faults in wind turbines: a data-mining approach[J]. Renewable Energy, 2012, 48: 110-116. [78] 史丽萍, 汤家升, 王攀攀, 等. 采用最优小波树和改进BP神经网络的感应电动机定子故障诊断[J]. 电工技术学报, 2015, 30(24): 38-45. Shi Liping, Tang Jiasheng, Wang Panpan, et al.Stator fault diagnosis of induction motors using the optimal wavelet tree and improved BP neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(24): 38-45. [79] 万书亭, 万杰, 张成杰. 基于灰色理论和变权模糊综合评判的风电机组性能评估[J]. 太阳能学报, 2015, 36(9): 2285-2291. Wan Shuting, Wan Jie, Zhang Chengjie.Comprehensive evaluation of wind power unit performance evaluation based on grey theory and variable weight fuzzy mathematics[J]. Acta Energiae Solaris Sinica, 2015, 36(9): 2285-2291. [80] 万杰. 基于SCADA数据的风电机组运行状态评估方法研究[D]. 保定: 华北电力大学, 2014. [81] 李秋佳. 基于大数据建模分析的风电机组运行状态评估方法[D]. 保定: 华北电力大学, 2019. [82] 宋志杰, 王健. 模糊聚类和LM算法改进BP神经网络的变压器故障诊断[J]. 高压电器, 2013, 49(5): 54-59. Song Zhijie, Wang Jian.Transformer fault diagnosis based on BP neural network optimized by fuzzy clustering and LM algorithm[J]. High Voltage Apparatus, 2013, 49(5): 54-59. [83] 罗森森. 基于故障数据和监测数据的风电机组优化维修策略研究[D]. 北京: 华北电力大学, 2019. [84] 柴江涛. 基于RCM的风电机组维修决策技术研究[D]. 北京: 华北电力大学, 2017. [85] 王瑞. 风电机组典型故障维修决策[D]. 北京: 华北电力大学, 2016. [86] 苏春, 周小荃. 基于半马尔科夫决策过程的风力机状态维修优化[J]. 机械工程学报, 2012, 48(2): 44-49. Su Chun, Zhou Xiaoquan.Condition-based maintenance optimization for wind turbines based on semi-Markov decision process[J]. Journal of Mechanical Engineering, 2012, 48(2): 44-49. [87] Byon E, Ntaimo L, Ding Yu.Optimal maintenance strategies for wind turbine systems under stochastic weather conditions[J]. IEEE Transactions on Reliability, 2010, 59(2): 393-404. [88] Byon E, Ding Yu.Season-dependent condition-based maintenance for a wind turbine using a partially observed Markov decision process[J]. IEEE Transactions on Power Systems, 2010, 25(4): 1823-1834. [89] 秦洋. 基于马尔可夫过程的风力发电系统可靠性分析与检修优化研究[D]. 上海: 上海电机学院, 2016. [90] 李帅. 基于机会的海上风电机组维修策略模型研究[D]. 北京: 华北电力大学, 2019. [91] Halvorsen-Weare E E, Gundegjerde C, Halvorsen I B, et al. Vessel fleet analysis for maintenance operations at offshore wind farms[J]. Energy Procedia, 2013, 35: 167-176. [92] Zhang Zhenyou.Scheduling and routing optimization of maintenance fleet for offshore wind farms using Duo-ACO[J]. Advanced Materials Research, 2014, 1039: 294-301. [93] Feng Jianshe, Jia Xiaodong, Zhu Feng, et al.An intelligent system for offshore wind farm maintenance scheduling optimization considering turbine production loss[J]. Journal of Intelligent & Fuzzy Systems, 2019, 37(5): 6911-6923. [94] Kovács A, Erdős G, Viharos Z J, et al.A system for the detailed scheduling of wind farm maintenance[J]. CIRP Annals, 2011, 60(1): 497-501. [95] 桑祺, 何焱, 冯笑丹, 等. 面向组合维修的海上风电场运行维护建模及仿真[J]. 电力系统自动化, 2016, 40(20): 83-91. Sang Qi, He Yan, Feng Xiaodan, et al.Modeling and simulation of combined repair oriented operation and maintenance for offshore wind farm[J]. Automation of Electric Power Systems, 2016, 40(20): 83-91. [96] 么亮. 基于TnPM的风力发电设备状态检修流程优化研究[D]. 保定: 华北电力大学, 2018.