An Overview of Mechanical Stress Wave in Power Electronics Device/Module Based on Acoustic Emission Testing Technology
Li Mengchuan1, He Yunze1,2, Meng Zhiqiang1, Zhou Yanan1, Li Yunjia2
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an 710049 China
Abstract:Some institutions have studied the mechanical stress wave that can characterize the condition of power electronic device/module, but these studies are scattered in signal extraction, signal analysis, and state characterization, and have not systematically summarized. Firstly, in this paper, the basic content of mechanical stress wave is discussed. The generation mechanism, detection circuits and signal processing methods applicable to power electronic devices/modules are summarized and compared. Then, the current research status of mechanical stress wave in power electronic devices/modules is reviewed. The composition mode, source mechanism, the relationship between frequency domain characteristics and health status of mechanical stress wave are summarized. Finally, the key issues of mechanical stress wave in power electronic devices/modules are analyzed from five aspects: mechanism analysis, research object, signal processing, state characterization and detection device, and future research directions are also proposed.
李孟川, 何赟泽, 孟志强, 周雅楠, 李运甲. 基于声发射检测技术的电力电子器件/模块机械应力波综述[J]. 电工技术学报, 2021, 36(22): 4773-4783.
Li Mengchuan, He Yunze, Meng Zhiqiang, Zhou Yanan, Li Yunjia. An Overview of Mechanical Stress Wave in Power Electronics Device/Module Based on Acoustic Emission Testing Technology. Transactions of China Electrotechnical Society, 2021, 36(22): 4773-4783.
[1] 赵争鸣, 袁立强, 鲁挺, 等. 我国大容量电力电子技术与应用发展综述[J]. 电气工程学报, 2015, 10(4): 26-34. Zhao Zhengming, Yuan Liqiang, Lu Ting, et al.Overview of the developments on high power electronic technologies and applications in China[J]. Journal of Electrical Engineering, 2015, 10(4): 26-34. [2] 王兆安, 刘进军. 电力电子技术[M]. 北京: 机械工业出版社, 2009. [3] Ding Xiaofeng, Zhou Yang, Cheng Jiawei.A review of gallium nitride power device and its applications in motor drive[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(1): 54-64. [4] 陈杰, 邓二平, 赵子轩, 等. 不同老化试验方法下SiC MOSFET失效机理分析[J]. 电工技术学报, 2020, 35(24): 5105-5114. Chen Jie, Deng Erping, Zhao Zixuan, et al.Failure mechanism analysis of SiC MOSFET under different aging test methods[J]. Transactions of China Elec- trotechnical Society, 2020, 35(24): 5105-5114. [5] 王学梅, 张波, 吴海平. 基于失效物理的功率器件疲劳失效机理[J]. 电工技术学报, 2019, 34(4): 717-727. Wang Xuemei, Zhang Bo, Wu Haiping.A review of fatigue mechanism of power devices based on physics-of-failure[J]. Transactions of China Electro- technical Society, 2019, 34(4): 717-727. [6] 李辉, 胡玉, 王坤, 等. 考虑杂散电感影响的风电变流器IGBT功率模块动态结温计算及热分布[J]. 电工技术学报, 2019, 34(20): 4242-4250. Li Hui, Hu Yu, Wang Kun, et al.Thermal distribution and dynamic junction temperature calculation of IGBT power modules for wind turbine converters considering the influence of stray inductances[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4242-4250. [7] 吴海富, 张建忠, 赵进, 等. SiC MOSFET短路检测与保护研究综述[J]. 电工技术学报, 2019, 34(21): 4519-4528. Wu Haifu, Zhang Jianzhong,Zhao Jin, et al.Review of short-circuit detection and protection of silicon carbide MOSFETs[J]. Transactions of China Electro- technical Society, 2019, 34(21): 4519-4528. [8] 王莉娜, 邓洁, 杨军一, 等. Si和SiC功率器件结温提取技术现状及展望[J]. 电工技术学报, 2019, 34(4): 703-716. Wang Lina, Deng Jie, Yang Junyi, et al.Junction temperature extraction methods for Si and SiC power devices-a review and possible alternatives[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(4): 703-716. [9] 王振, 任孟干, 国建宝, 等. 直流输电换流阀晶闸管过电压保护研究[J]. 电力系统保护与控制, 2020, 48(10): 182-187. Wang Zhen, Ren Menggan, Guo Jianbao, et al.Research on overvoltage protection of a thyristor on DC converter valves[J]. Power System Protection and Control, 2020, 48(10): 182-187. [10] 周雒维, 张益, 王博. 一种基于调节缓冲电容的IGBT热管理方法[J]. 电机与控制学报, 2019, 23(4): 28-36. Zhou Luowei, Zhang Yi, Wang Bo.IGBT thermal management method based on snubber capacitor[J]. Electric Machines and Control, 2019, 23(4): 28-36. [11] 李武华, 陈玉香, 罗皓泽, 等. 大容量电力电子器件结温提取原理综述及展望[J]. 中国电机工程学报, 2016, 36(13): 3546-3557. Li Wuhua, Chen Yuxiang, Luo Haoze, et al.Review and prospect of junction temperature extraction principle of high power semiconductor devices[J]. Proceedings of the CSEE, 2016, 36(13): 3546-3557. [12] 沈功田. 声发射检测技术及应用[M]. 北京: 科学出版社, 2015. [13] Van De Wal B J, Kendall G, Sammakia B, et al. Acoustic emission analysis for fatigue prediction of lap solder joints in mode two shear[J]. International Journal of Damage Mechanics, 2001, 10(3): 256-276. [14] Bansal A, Guirguis C, Liu K.Investigation of pad cratering in large flip-chip BGA using acoustic emission[C]//IPC/APEX Conference, San Diego, 2012: 1-12. [15] 李孟川, 孟志强, 胡毅, 等. 电力电子器件机械应力波的试验研究[J]. 湖南大学学报(自然科学版), 2019, 46(4): 74-79. Li Mengchuan, Meng Zhiqiang, Hu Yi, et al.Experimental study of mechanical stress wave in power electronics device[J]. Journal of Hunan University (Natural Sciences), 2019, 46(4): 74-79. [16] 邹翔, 何赟泽, 胡毅, 等. 低压条件下功率MOSFET应力波产生理论与试验研究[C]//第十五届中国电工技术学会学术年会, 昆明, 2019: 173-181. [17] Kärkkäinen T J, Talvitie J P, Kuisma M, et al.Acoustic emission in power semiconductor modules- first observations[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6081-6086. [18] Li Mengchuan, He Yunze, Meng Zhiqiang, et al.Acoustic emission-based experimental analysis of mechanical stress wave in IGBT device[J]. IEEE Sensors Journal, 2020, 20(11): 6064-6074. [19] Müller S, Drechsler C, Heinkel U, et al.Acoustic emission for state-of-health determination in power modules[C]//13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, 2016: 468-471. [20] Davari P, Kristensen O, Iannuzzo F. Investigation of acoustic emission as a non-invasive method for detection of power semiconductor aging[J]. Micro- electronics Reliability, 2018, 88-90: 545-549. [21] Kozak M, Gordon R.Experimental investigations of monolithic IGBT transistor acoustic emission pheno- mena[J]. Poznan University of Technology Academic Journals, 2019, 99: 19-28. [22] Choi U, Blaabjerg F, Jørgensen S.Study on effect of junction temperature swing duration on lifetime of transfer molded power IGBT modules[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 6434-6443. [23] Schuler S, Scheuermann U.Impact of test control strategy on power cycling lifetime[C]//PCIM Europe, Nuremberg, 2010: 331-336. [24] Kärkkäinen T J, Talvitie J P, Ikonen O, et al.Sounds from semiconductors-acoustic emission experiment with a power module[C]//16th European Conference on Power Electronics and Applications, Lappeenranta, 2014: 1-6. [25] Kärkkäinen T J.Observations of acoustic emission in power semiconductors[D]. Finland: Lappeenranta University of Technology, 2015. [26] Kärkkäinen T J, Talvitie J P, Kuisma M, et al.Measurement challenges in acoustic emission research of semiconductors[C]//17th European Conference on Power Electronics and Applications, Geneva, 2015: 1-6. [27] Kozak M, Gordon R.Experimental investigations of monolithic IGBT transistor acoustic emission pheno- mena[J]. ITM Web of Conferences, 2019, 28: 01036. [28] Bejger A, Kozak M, Gordon R.The use of acoustic emission elastic waves as diagnosis method for insulated-gate bipolar transistor[J]. Journal of Marine Engineering & Technology, 2020, 19(4): 186-196. [29] 鹏翔科技(中国). PXDAQ18373E高精度(18bit)高速率(30M)8通道PCIE声发射卡[EB/OL]. http://www. ndttech.net/ae/dataacquisition/pxdaq18373e-ae-card. html/. [30] Vallen AE (Germany). AMSY-6 system descrip- tion[EB/OL].https://www.vallen.de/zdownload/pdf/ AMSY-6_Description.pdf/. [31] 梁家惠. 声发射检测中的压电换能器[J]. 无损检测, 2002, 24(12): 526-531. Liang Jiahui.Piezoelectric transducers for acoustic emission testing[J]. Nondestructive Testing, 2002, 24(12): 526-531. [32] 时书丽, 赵国兴. 声发射传感器技术与应用[J]. 仪表技术与传感器, 1998(2): 36-39. Shi Shuli, Zhao Guoxing.Technology and application of admeasuring echo sensor[J]. Instrument Technique and Sensor, 1998(2): 36-39. [33] Vallen AE (Germany). Vallen systeme sensors[EB/OL].https://www.vallen.de/sensors/. [34] MISTRAS Group (United States). Physical acoustics sensors[EB/OL]. https://www.physicalacoustics.com/ sensors/. [35] Fuji Ceramics Corporation (Japan). Wide bandwidth AE sensors[EB/OL]. http://www.fujicera.co.jp/en/ product/ae/wide/. [36] 耿荣生, 沈功田, 刘时风. 声发射信号处理和分析技术[J]. 无损检测, 2002, 24(1): 23-28. Geng Rongsheng, Shen Gongtian, Liu Shifeng.An overview on the development of acoustic emission signal processing and analysis technique[J]. Nonde- structive Testing, 2002, 24(1): 23-28. [37] Bashir I, Walsh J, Thies P R, et al.Underwater acoustic emission monitoring-experimental investi- gations and acoustic signature recognition of synthetic mooring ropes[J]. Applied Acoustics, 2017, 121: 95-103. [38] Boczar T, Zmarzly D.Application of wavelet analysis to acoustic emission pulses generated by partial discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(3): 433-449. [39] Gu Fengchang, Chang Hongchan, Chen Fu, et al.Application of the Hilbert-Huang transform with fractal feature enhancement on partial discharge recognition of power cable joints[J]. IET Science, Measurement & Technology, 2012, 6(6): 440-448. [40] He Yunze, Chen Sheng, Zhou Deqiang, et al.Shared excitation based nonlinear ultrasound and vibrother- mography testing for CFRP barely visible impact damage inspection[J]. IEEE Transactions on Indu- strial Informatics, 2018, 14(12): 5575-5584. [41] 陈凯凯. 光伏功率优化器电磁辐射建模及抑制[D]. 杭州: 浙江大学, 2019. [42] 何莹. 功率驱动电路开关噪声的电磁干扰特性研究[D]. 南京: 东南大学, 2015. [43] 杜志娟. GaN基HEMT红外探测器力电耦合机制理论模型的仿真研究[D]. 北京: 北京工业大学, 2016. [44] 张迪, 吴先梅. 基于有限元的空耦超声相控阵Lamb波激发与检测[J]. 应用声学, 2015, 34(3): 201-206. Zhang Di, Wu Xianmei.The numerical simulation of the excitation and detection of Lamb waves using air-coupled ultrasonic phased array with finite element method[J]. Journal of Applied Acoustics, 2015, 34(3): 201-206. [45] 章欣, 冯乃章, 王艳, 等. 钢轨裂纹伤损声发射源的建模仿真与特征分析[J]. 声学学报, 2015, 40(4): 537-545. Zhang Xin, Feng Naizhang, Wang Yan, et al.Feature analysis of acoustic emission sources for the rail defect detection by the finite element method[J]. ACTA Acustica, 2015, 40(4): 537-545. [46] Beale C, Niezrecki C, Inalpolat M.An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades[J]. Mechanical Systems and Signal Processing, 2020, 142: 106754. [47] Prajna K, Mukhopadhyay C K.Fractional fourier transform based adaptive filtering techniques for acoustic emission signal enhancement[J]. Journal of Nondestructive Evaluation, 2020, 39(1): 1-14. [48] Wang Kangwei, Hao Qiushi, Zhang Xin, et al.Blind source extraction of acoustic emission signals for rail cracks based on ensemble empirical mode decom- position and constrained independent component analysis[J]. Measurement, 2020, 157: 107653. [49] Bao Yuequan, Tang Zhiyi, Li Hui, et al.Computer vision and deep learning-based data anomaly detection method for structural health monitoring[J]. Structural Health Monitoring, 2019, 18(2): 401-421. [50] Islam M, Sohaib M, Kim J, et al.Crack classification of a pressure vessel using feature selection and deep learning methods[J]. Sensors, 2018, 18(12): 4379. [51] Auerswald C, Sorger A, Dienel M, et al.MEMS acoustic emission sensor with mechanical noise rejection[C]//International Multi-Conference on Systems, Signals & Devices, Chemnitz, 2012: 1-6. [52] Búa-núñez I, Posada-román J E, Rubio-serrano J, et al. Instrumentation system for location of partial discharges using acoustic detection with piezoelectric transducers and optical fiber sensors[J]. IEEE Transa- ctions on Instrumentation and Measurement, 2014, 63(5): 1002-1013.