Research of Condition Monitoring Big Data Storage and Clustering
Zhou Guoliang1,2, Song Yaqi1, Wang Guilan1, Zhu Yongli1
1. North China Electric Power University Baoding 071003 China 2. State Grid Jibei Electric Power Company Limited Skill Training Center Baoding 071051 China
Abstract:In recent years, with the power transmission equipment condition monitoring continuously strengthen in the breadth and depth, more and more monitoring data were collected, and gradually formed big data of smart grid condition monitoring. However, how to effectively store and analyze condition monitoring big data is a key issue of big data applying in power transmission equipment condition monitoring fields. Based on cloud computing platform and considering characteristics of condition monitoring data, monitoring data will be combined a large mass of small files into sequence file and compressed storage, thereby improving the efficiency of storage and processing. For condition monitoring big data low-density characteristics, firstly fractal theory was used for dimensionality reduction monitoring data, and computing time domain and frequency domain feature quantity, in addition utilizing DBSCAN algorithm clustering the sample data and acquiring different cluster feature data; then integrating with cloud computing platform parallel data processing capability designed MapReduce algorithm for clustering condition monitoring big data, and contributing found valuable feature quantity from big data; finally, using cluster result of big data updated and enriched sample data. Experimental results show that this method can efficiently store and cluster condition monitoring big data, for improving the status of device evaluation and fault diagnosis has a certain role.
周国亮, 宋亚奇, 王桂兰, 朱永利. 状态监测大数据存储及聚类划分研究[J]. 电工技术学报, 2013, 28(2增): 337-344.
Zhou Guoliang, Song Yaqi, Wang Guilan, Zhu Yongli. Research of Condition Monitoring Big Data Storage and Clustering. Transactions of China Electrotechnical Society, 2013, 28(2增): 337-344.
[1] 宋亚奇, 周国亮, 朱永利. 智能电网大数据处理技术现状与挑战[J]. 电网技术, 2013, 37(4): 927-935. Song Yaqi, Zhou Guoliang, Zhu Yongli. Present status and challenges of big data processing in smart grid[J]. Power System Technology, 2013, 37(4): 927-935. [2] 王德文, 宋亚奇, 朱永利. 基于云计算的智能电网信息平台[J]. 电力系统自动化, 2010(22): 7-12. Wang Dewen, Song Yaqi, Zhu Yongli. Information platform of smart grid based on cloud computing[J]. Automation of Electric Power Systems, 2010(22): 7-12. [3] 沐连顺, 崔立忠, 安宁. 电力系统云计算中心的研究与实践[J]. 电网技术, 2011, 35 (6): 170-175. Mu Lianshun, Cui Lizhong, An Ning. Research and practice of cloud computing center for power system[J]. Power System Technology, 2011, 35(6): 170-175. [4] 王广辉, 李保卫, 胡泽春, 等. 未来智能电网控制中心面临的挑战和形态演变[J]. 电网技术, 2011, 35 (8): 1-5. Wang Guanghui, Li Baowei, Hu Zechun, et al. Challenges and future evolution of control center under smart grid environment. Power System Technology, 2011, 35(8): 1-5. [5] 李晗, 萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-16. Li Han, Xiao Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-16. [6] 王燕, 申元霞, 陶春梅. 面向领域的数据驱动自主式知识获取模型及实现[J]. 重庆邮电大学学报: 自然科学版, 2009, 21(4): 502-506. Wang Yan, Shen Yuanxia, Tao Chunmei. Domain oriented data-driven knowledge acquisition model and its implementation[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2009, 21(4): 502-506. [7] 刘吉臻, 杨光军, 谭文, 等. 基于数据驱动的电站燃烧稳定度综合评价[J]. 中国电机工程学报, 2007, 27(35): 1-6. Liu Jizhen, Yang Guangjun, Tan Wen, et al. Synthetic evaluation on the degree of combustion stability in power station based on data-driven[J]. Proceedings of the CSEE, 2007, 27(35): 1-6. [8] 张广斌, 束洪春, 于继来. 利用广义电流模量的行波实测数据半监督聚类筛选[J]. 中国电机工程学报, 2012, 32(10): 150-159. Zhang Guangbin, Shu Hongchun, Yu Jilai. Travelling Wave Field Data Contingency Screening Based on Semi-supervised Clustering Using Generalized Current Modal Components. Proceedings of the CSEE, 2012, 32(10): 150-159. [9] 陈铁华, 陈启卷. 模糊聚类分析在水电机组故障诊断中的应用[J]. 中国电机工程学报, 2002, 22(3): 43-47. Chen Tiehua, Chen Qijuan. Fuzzy clustering analysis based vibration fault diagnosis of hydroelectric generating unit[J]. Proceedings of the CSEE, 2002, 22(3): 43-47. [10] 陈伟根, 夏青, 罗兵, 等. 用于绝缘子污秽度预测的泄漏电流分形特征[J]. 高电压技术, 2011, 37(5): 1136-1141. Chen Weigen, Xia Qing, Luo Bing, et al. Fractal characteristic of leakage current for insulators contamination degree prediction[J]. High Voltage Engineering, 2011, 37(5): 1136-1141. [11] 陈伟根, 夏青, 孙才新, 等. 绝缘子放电区段划分及污秽预测的泄漏电流分形维数研究[J]. 中国电机工程学报, 2011, 31(13): 121-127. Chen Weigen, Xia Qing, Sun Caixin, et al. Research on fractal dimension of leakage current for discharge zones dividing and contamination forecasting of insulators[J]. Proceedings of the CSEE, 2011, 31(13): 121-127. [12] Xuhui Liu, Jizhong Han, Yunqin Zhong. Implementing WebGIS on Hadoop: A case study of improving small file I/O performance on HDFS[J]. Cluster, 2009: 1-8. [13] Bo Dong, Jie Qiu, Qinghua Zheng, et al. A Novel Approach to Improving the Efficiency of Storing and Accessing Small Files on Hadoop: A Case Study by PowerPoint Files[C]. In Proceedings of IEEE SCC’ 2010: 65~72. [14] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco: Freeman, 1998. [15] 关凯书, 赵虹, 王志文. 路表不平的分形特征[J]. 农业机械学报, 2000, 31(6): 21-24. Guan Kaishu, Zhao Hong, Wang Zhiwen, Fractal Behavior of a Rugged Road Surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2000, 31(6): 21-24. [16] 吴振升, 王玮, 杨学昌, 等. 基于分形理论的高压断路器机械振动信号处理[J]. 高电压技术, 2005, 31(6): 19-21. Wu Zhengsheng, Wang Wei, Yang Xuechang, et al. Processing of Mechanical Vibration Signals of High- Voltage Circuit Breakers Based on Fractal Theory[J]. High Voltage Engineering. 2005, 31(6): 19-21. [17] 吕铁军, 郭双兵, 肖先赐. 调制信号的分形特征研究[J]. 中国科学E辑, 2001, 31(6): 508-513. Lv Tiejun, Guo Shuangbing, Xiao Xianci. Research of fractal features of the modulated signal. Science in China, Ser. E, 2001, 31(6): 508-513. [18] 姚陈果, 李璟延, 米彦, 等. 绝缘子安全区泄漏电流频谱特征提取及污秽状态预测[J]. 中国电机工程学报, 2007, 27(30): 1-8. Yao Chenguo, Li Jingyan, Mi Yan, et al. Abstracting Frequency Spectrum Characteristics of Insulators Leakage Current in Safety Zone to Forecast the Contamination Condition[J]. Proceedings of the CSEE, 2007, 27 (30): 1-8. [19] M. Ester, H. -P. Kriegel, J. Sander, et al. A density- based algorithm for discovering clusters in large spatial databases with noise[C]. Data Mining and Knowledge Discovery, 1996: 226-231. [20] 黄海涛, 张粒子, 乔慧婷, 等. 基于变密度聚类的居民阶梯分段电量制定方法[J]. 电网技术, 2010, 34(11): 111-116. Huang Haitao, Zhang Lizi, Qiao Huiting, et al. A Method to Determine Step-Shaped Electricity Consump- tion Levels for Residential Area Based on Variable- Density Clustering[J]. Power System Technology, 2010, 34(11): 111-116.