电工技术学报  2020, Vol. 35 Issue (11): 2319-2327    DOI: 10.19595/j.cnki.1000-6753.tces.191608
能源互联网中的分布式建模、优化与控制技术专题(特约主编:郭庆来 教授 郭烨 教授) |
电力物联网终端非法无线通信链路检测方法
肖勇1, 钱斌1, 蔡梓文1, 洪亮2, 苏盛2
1.南方电网科学研究院 广州 510663;
2.长沙理工大学电气与信息工程学院 长沙 410114
Malicious Wireless Communication Link Detection of Power Internet of Thing Devices
Xiao Yong1, Qian Bin1, Cai Ziwen1, Hong Liang2, Su Sheng2
1. Electric Power Research Institute of China Southern Power Grid Guangzhou 510663 China;
2. College of Electrical Engineering Changsha University of Science and Technology Changsha 410114 China
全文: PDF (1756 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 散布于电力系统各处的配用电终端及输电系统在线监测物联网终端多采用2G的通信无线分组业务(GPRS),通过电信服务商的无线虚拟专网通信,存在接入非法无线通信链路的安全风险。尽管3G和4G支持双向身份认证,可避免接入非法无线通信链路,但在物联网终端向下兼容特性影响下,相关风险在支持GPRS的通信物联网终端退出运行前将始终存在。针对电力物联网终端可能接入非法无线通信链路的问题,利用电力物联网终端和通信基站均为固定位置部署、物联网终端感知的合法通信基站信号强度具有相同变化趋势的特点,将真、伪通信基站在信号强度变化模式上的差异性特征用作无线通信基站的特征指纹,提出基于基站信号强度历史曲线密度聚类的非法无线通信链路检测方法。数值仿真表明所提方法可在有限计算资源和通信资源的约束下、在设置的时间窗内有效甄别非法无线通信链路,提高电力物联网终端的安全防护水平。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖勇
钱斌
蔡梓文
洪亮
苏盛
关键词 非法无线通信链路信号强度聚类分析无线虚拟专网    
Abstract:The power internet of thing (IoT) devices dispersed around the user side and most of them communicate with general packet radio service (GPRS) via wireless virtual private network (VPN) provided by internet service provider (ISP). The Power Internet of Thing (IoT) devices could connect to malicious base station and suffer cyber-attack. Although 3G and 4G generation communication support two-way authentication and could prevent from connecting to malicious base station, threat of malicious base station will exist till all the IoT devices communicate with GPRS are replaced since existing IoT device are designed to be backward-compatible. Since IoT device and base station are deployed in fix location, the difference in signal strength profile of legitimate and malicious base station can be utilized as a fingerprinting to detect a malicious base station. Signal strength clustering based approach is proposed to identify malicious base station. Numerical simulation indicates that the proposed approach could adapt to IoT devices with limited computation resource and the malicious base station could be identified within the moving window at easy. The power IoT devices could be hardened with the proposed approach.
Key wordsMalicious base station    signal strength    clustering analysis    wireless virtual private network   
收稿日期: 2019-11-24     
PACS: TM73  
基金资助:国家自然科学基金(51777015,U19266207)、国家重点研发计划(2018YFB0904903)、南方电网科技项目(ZNKJXM20170085)、湖南省教育厅重点科研项目(15A005)和湖南省自然科学基金(2020JJ40579)资助
通讯作者: 苏 盛 男,1975年生,博士,教授,博士生导师,研究方向为电力系统网络安全防护与反窃电。E-mail:eessheng@163.cn   
作者简介: 肖 勇 男,1978年生,博士,教授级高级工程师,研究方向为配用电系统大数据应用与网络安全防护。E-mail:xiaoyong@csg.cn
引用本文:   
肖勇, 钱斌, 蔡梓文, 洪亮, 苏盛. 电力物联网终端非法无线通信链路检测方法[J]. 电工技术学报, 2020, 35(11): 2319-2327. Xiao Yong, Qian Bin, Cai Ziwen, Hong Liang, Su Sheng. Malicious Wireless Communication Link Detection of Power Internet of Thing Devices. Transactions of China Electrotechnical Society, 2020, 35(11): 2319-2327.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.191608          https://dgjsxb.ces-transaction.com/CN/Y2020/V35/I11/2319