Abstract:Transformer oil chromatography analysis is of great significance for the operation and maintenance of the power transformers, and fuzzy clustering algorithm is an important intelligent algorithm for oil chromatographic analysis. However, the traditional fuzzy c-means algorithm (FCM) cannot achieve the fault classification of dissolved gas analysis (DGA) data effectively. The traditional FCM membership function has many local extreme points, and this is obstructive to DGA data classification. This paper reconstructed the membership degree calculation method of fuzzy clustering algorithm. The similarity function of exponential form was constructed, and the membership function with monotonicity of distance was obtained. This method eliminated the local extreme point of membership function. The similarity calculation was divided into two steps. First calculated the sub-similarity according to each attribute of the sample, and then merged them into the final membership. The example shows that the scheme improves the ability of fuzzy clustering algorithm to identify DGA fault pattern, and improves the classification performance of the algorithm.
李恩文, 王力农, 宋斌, 方雅琪. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602.
Li Enwen, Wang Linong, Song Bin, Fang Yaqi. Analysis of Transformer Oil Chromatography Based on Improved Fuzzy Clustering Algorithm. Transactions of China Electrotechnical Society, 2018, 33(19): 4594-4602.
[1] DGA guide working group. IEEE std C57.104—2008, IEEE guide for the interpretation of gases generated in oil-immersed transformers[S]. New York, USA: IEEE, 2008. [2] Rogers R R.IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis[J]. IEEE Transactions on and Electrical Insulation, 1978, 13(5): 348-354. [3] Duval M, dePabla A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 31-41. [4] 王健一, 凌愍, 李金忠, 等. DL/T 722-2014, 变压器油中溶解气体分析和判断导则[S]. 北京: 中国电力出版社, 2015. [5] Bakar N A, Abu-Siada A, Islam S.A review of dissolved gas analysis measurement and interpretation techniques[J]. IEEE Electrical Insulation Magazine, 2014, 30(3): 39-49. [6] Abu-Siada A, Hmood S.A new fuzzy logic approach to identify power transformer criticality using dissolved gas-in-oil analysis[J]. International Journal of Electrical Power & Energy Systems, 2015, 67: 401-408. [7] Tomsovic K, Tapper M, Ingvarsson T.A fuzzy information approach to integrating different transformer[J]. IEEE Transactions on Power Delivery, 1993, 8(3): 1638-1646. [8] Zheng Banbo, Liao Ruijin, Grzybowski S, et al.Fault diagnosis of power transformers using multi-class least square support vector machines classifiers with particle swarm optimization[J]. IET Electric Power Application, 2011, 5(9): 691-696. [9] 郑含博, 王伟, 李晓纲, 等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术, 2014, 40(11): 3424-3429. Zheng Hanbo, Wang Wei, Li Xiaogang, et al. Fault diagnosis method of power transformers using multi-class LS-SVM and improved PSO[J]. High Voltage Engineering, 2014, 40(11): 3424-3429. [10] 鲍永胜, 郝峰杰. GIS局部放电脉冲分类特征提取算法[J]. 电工技术学报, 2016, 31(9): 181-188.Bao Yongsheng, Hao Fengjie. Classification feature extraction algorithm for GIS partial discharge pulses[J]. Transactions of China Electrotechnical Socity, 2016, 31(9): 181-188. [11] 高骏, 何俊佳. 量子遗传神经网络在变压器油中溶解气体分析中的应用[J]. 中国电机工程学报, 2010, 30(30): 121-127. Gao Jun, He Junjia. Application of quantum genetic ANNs in transformer dissolved gas-in-oil analysis[J]. Proceedings of the CSEE, 2010, 30(30): 121-127. [12] Malabanan D R, Nerves A C.Power transformer condition assessment using an immune neural network approach to dissolved gas analysis[J]. Government Publications Review, 2014, 9(2): 1-6. [13] Naresh R, Sharma V, Vashisth M.An integrated neural fuzzy approach for fault diagnosis of transformers[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2017-2024. [14] Duval M, Dukarm J.Adaptive neuro-fuzzy inference system approach for simultaneous diagnosis of the type and location of faults in power transformers[J]. IEEE Electrical Insulation Magazine, 2012, 28(5): 32-42. [15] Boczar T, Cicho A, Borucki S.Diagnostic expert system of transformer insulation systems using the acoustic emission method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(2): 854-865. [16] Bezdk J C.Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum, 1981. [17] 汪可, 廖瑞金. 局部放电UHF脉冲的时频特征提取与聚类分析[J]. 电工技术学报, 2015, 30(2): 211-219.Wang Ke, Liao Ruijin. Time-frequency features extraction and clustering analysis of partial discharge UHF pulse[J]. Transactions of China Electrotechnical Socity, 2015, 30(2): 211-219. [18] 蔡国伟, 史一明. 基于节点聚类分粗的多馈入直流落点筛选方法[J]. 电工技术学报, 2017, 32(9): 140-148.Cai Guowei, Shi Yiming. Multi-infeed DC terminal location selection method based on clustering nodes[J]. Transactions of China Electrotechnical Socity, 2017, 32(9): 140-148. [19] 王振浩, 张明泽. 考虑柔性直流落点约束的最优主动解列断面搜索算法[J]. 电工技术学报, 2017, 32(17): 57-66.Wang Zhenhao, Zhang Mingze. A searching algorithm for optimal controlled islanding surfaces considering VSC-HVDC terminal constraint[J]. Transactions of China Electrotechnical Socity, 2017, 32(17): 57-66. [20] 杨大勇, 葛琪. 基于K均值聚类的光伏电站运行状态模式识别研究[J]. 电力系统保护与控制, 2016, 44(14): 25-30.Yang Dayong, Ge Qi. Research on operation state pattern recognition of PV station based on the principle of K-means clustering[J]. Power System Protection and Control, 2016, 44(14): 25-30. [21] 李俭, 孙才新, 陈伟根. 灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J]. 中国电机工程学报, 2003, 23(2): 112-115.Li Jian, Sun Caixin, Chen Weigen. A method of synthesis based on the grey cluster and fuzzy cluster about internal fault diagnosis of transformer[J]. Proceedings of the CSEE, 2003, 23(2): 112-115. [22] 熊浩, 孙才新, 廖瑞金, 等. 基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J]. 中国电机工程学报, 2005, 25(20): 162-166. Xiong Hao, Sun Caixin, Liao Ruijin, et al. Study on kernel-based possibility clustering and dissolved gas analysis for fault diagnosis of power transformer[J]. Proceedings of the CSEE, 2005, 25(20): 162-166. [23] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(3): 64-70.Li Ying, Shu Naiqiu. Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechnical Socity, 2016, 31(3): 64-70. [24] 王子建. 模糊聚类分析及其在变压器油色谱数据分析中的应用[D]. 武汉: 华中科技大学, 2006.