Transformer oil chromatographic analysis (DGA) is an important technical method for transformer operation and maintenance, and Fuzzy C-Means clustering is an important intelligent algorithm for DGA. However, the objective function of the clustering algorithm is a typical non-convex function and the optimization process is a hill-climbing algorithm based on local search. Consequently, the iterative process is easy to fall into local extremum, and the algorithm cannot classify effective oil chromatographic data. Chaotic variables have randomness and ergodicity, making global optimization possible. In this paper, the chaotic sequence is used to perform “artificial mutation” on the cluster center in the process of cluster iteration, and multiple optimization trajectories are set in parallel. In the iterative process, each of the optimized trajectories is deduced according to its own gradient information, and also the optimization information of the remaining trajectories is shared. The original optimization trajectory can be changed in the process of iterative optimization, thereby avoiding the optimization process from terminating at the local extreme point and achieving global optimization. The case analysis shows that the proposed method achieves the global optimization of clustering analysis and improves the ability of fuzzy clustering algorithm to identify DGA fault patterns, which has practical application value.
李恩文, 王力农, 宋斌, 方雅琪. 基于混沌序列的变压器油色谱数据并行聚类分析[J]. 电工技术学报, 2019, 34(24): 5104-5114.
Li Enwen, Wang Linong, Song Bin, Fang Yaqi. Parallel Clustering Analysis of Dissolved Gas Analysis Data Based on Chaotic Sequences. Transactions of China Electrotechnical Society, 2019, 34(24): 5104-5114.
[1] Rogers R R.IEEE and IEC codes to interpret incipient faults in transformers using gas in oil analysis[J]. IEEE Transactions on and Electrical Insulation, 1978, 13(5): 348-354.
[2] Duval M, dePabla A. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases[J]. IEEE Electrical Insulation Magazine, 2001, 17(2): 31-41.
[3] British Standards Institute Staff. Mineral oil- impregnated electrical equipment in service-guide to the interpretation of dissolved and free gases analysis[S]. IEC Standard 60599: Geneva, Switzerland, 2015.
[4] IEEE. IEEE guide for the interpretation of gases generated in oil-immersed transformers[S]. IEEE Standard C57. 104, IEEE: New York, USA, 2009.
[5] ASTM Standard D3612-02. Standard test method for analysis of gases dissolved in electrical insulating oil by gas chromatography[S]. ASTM: PA, USA, 2017.
[6] 中国能源局. DL/T 722-2014 变压器油中溶解气体分析和判断导则[S]. 北京: 中国电力出版社, 2015.
[7] Sun H C, Huang Y C, Huang C M.A review of dissolved gas analysis in power transformers[J]. Energy Procedia, 2012, 14: 1220-1225.
[8] Cheng L F, Yu T.Dissolved gas analysis principled- based intelligent approaches to fault diagnosis and decision making for large oil-immersed power transformers: a survey[J]. Energies, 2018, 11(4): 913-982.
[9] Duval M.A review of faults detecTab.by gas-in-oil analysis in transformers[J]. IEEE Electrical Insulation Magazine, 2002, 18(3): 8-17.
[10] Duval M, Lamarre L.The duval pentagon-a new complementary tool for the interpretation of dissolved gas analysis in transformers[J]. IEEE Electrical Insulation Magazine, 2012, 30(6): 6-12.
[11] Mansour D A.Development of a new graphical technique for dissolved gas analysis in power transformers based on the five combustible gases[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(5): 2507-2512.
[12] Faiz J, Soleimani M.Dissolved gas analysis evaluation in electric power transformers using conventional methods: a review[J]. IEEE Transa- ctions on Dielectrics & Electrical Insulation, 2017, 24(2): 1239-1249.
[13] Bakar N, Abu-Siada A, Islam S.A review of dissolved gas analysis measurement and inter- pretation techniques[J]. IEEE Electrical Insulation Magazine, 2014, 30: 39-49.
[14] Senoussaoui M E A, Brahami M, Fofana I. Com- bining and comparing various machine-learning algorithms to improve dissolved gas analysis inter- pretation[J]. IET Generation, Transmission & Distribution, 2018, 12(15): 3673-3679.
[15] 高骏, 何俊佳. 量子遗传神经网络在变压器油中溶解气体分析中的应用[J]. 中国电机工程学报, 2010, 30(30): 121-127.
Gao Jun, He Junjia.Application of quantum genetic ANNs in transformer dissolved gas-in-oil analysis[J]. Proceedings of the CSEE, 2010, 30(30): 121-127.
[16] Ghoneim S S M, Taha I B M, Elkalashy N I. Integrated ANN-based proactive fault diagnostic scheme for power transformers using dissolved gas analysis[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2016, 23(3): 1838-1845.
[17] 郑含博, 王伟, 李晓纲, 等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术, 2014, 40(11): 3424-3429.
Zheng Hanbo, Wang Wei, Li Xiaogang, et al.Fault diagnosis method of power transformers using multi-class LS-SVM and improved PSO[J]. High Voltage Engineering, 2014, 40(11): 3424-3429.
[18] 李俭, 孙才新, 陈伟根. 灰色聚类与模糊聚类集成诊断变压器内部故障的方法研究[J]. 中国电机工程学报, 2003, 23(2): 116-119.
Li Jian, Sun Caixin, Chen Weigen.A method of synthesis based on the grey cluster and fuzzy cluster about internal fault diagnosis of transformer[J]. Proceedings of the CSEE, 2003, 23(2): 116-119.
[19] Noori M, Effatnejad R.Using dissolved gas analysis results to detect and isolate the internal faults of transformers by applying a fuzzy logic method[J]. IET Generation, Transmission & Distribution, 2017, 11: 2721-2729.
[20] 李恩文, 王力农, 宋斌. 基于改进模糊聚类算法的变压器油色谱分析[J]. 电工技术学报, 2018, 33(19): 4594-4602.
Li Enwen, Wang Linong, Song Bin.Analysis of transformer oil chromatography based on improved fuzzy clustering algorithm[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4594-4602.
[21] Dunn J C.A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3): 32-57.
[22] 熊浩, 孙才新, 廖瑞金, 等. 基于核可能性聚类算法和油中溶解气体分析的电力变压器故障诊断研究[J]. 中国电机工程学报, 2005, 25(20): 162-166.
Xiong Hao, Sun Caixin, Liao Ruijin, et al.Study on kernel-based possibility clustering and dissolved gas analysis for fault diagnosis of power transformer[J]. Proceedings of the CSEE, 2005, 25(20): 162-166.
[23] 汪可, 廖瑞金. 局部放电UHF脉冲的时频特征提取与聚类分析[J]. 电工技术学报, 2015, 30(2): 211-219.
Wang Ke, Liao Ruijin.Time-frequency features extraction and clustering analysis of partial discharge UHF pulse[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 211-219.
[24] 蔡国伟, 史一明. 基于节点聚类分粗的多馈入直流落点筛选方法[J]. 电工技术学报, 2017, 32(9): 140-148.
Cai Guowei, Shi Yiming.Multi-infeed DC terminal location selection method based on clustering nodes[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 140-148.
[25] 王振浩, 张明泽. 考虑柔性直流落点约束的最优主动解列断面搜索算法[J]. 电工技术学报, 2017, 32(17): 57-66.
Wang Zhenhao, Zhang Mingze.A searching algo- rithm for optimal controlled islanding surfaces considering VSC-HVDC terminal constraint[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 57-66.
[26] 杨大勇, 葛琪. 基于K均值聚类的光伏电站运行状态模式识别研究[J]. 电力系统保护与控制, 2016, 44(14): 25-30.
Yang Dayong, Ge Qi.Research on operation state pattern recognition of PV station based on the principle of K-means clustering[J]. Power System Protection and Control, 2016, 44(14): 25-30.
[27] Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M]. New York, USA: Plenum Press, 1981.
[28] 韩敏. 混沌时间序列预测理论与方法[M]. 北京: 中国水利水电出版社, 2007.