Span Determining of Photovoltaic Generation Data Mining
Li Jianlin1,Ji Tianming2,Kong Lingda1,Han Xiaojuan2
1. China Electrical Power Research Institute Beijing 100192 China; 2. School of Control and Computer Engineering, North China Electric Power University Beijing 102206 China
Abstract:Particle size and span are two important indicators when analyzing photovoltaic plant’s active power output characteristic. Particle size determines the sampling interval and span determines the time length of data. Under a certain particle size, small span make information be of scarcity and distortion while big span make information be of redundancy and repeatability. Therefore, determining the data span is of great significance to analysis of photovoltaic plant’s output characteristic. In this paper, statistical characteristics of photovoltaic plant’s output is analyzed firstly, autocorrelation analysis gives a preliminary conclusion of determining the data span. With a cluster analysis of output data based on weather features, we use probability and statistics principles to take an optimum sample size estimating for photovoltaic plant’s output data. The data span needed required for analysis of photovoltaic plant’s output data is determined and relation between energy storage system capacity demand and data span is studied. The result shows that photovoltaic plant’s output data span required for deploying energy storage system capacity demand is 31days.
[1] 赵波, 张雪松, 洪博文. 大量分布式光伏电源接入智能配电网后的能量渗透率研究[J]. 电力自动化设备, 2012, 08: 95-100. Zhao Bo, Zhang Xuesong, Hong Bowen. Energy penetration of large-scale distributed photovoltaic sources integrated into smart distribution network[J]. Electric Power Automation Equipment, 2012, 08: 95-100. [2] 刘伟, 彭冬, 卜广全, 等. 光伏发电接入智能配电网后的系统问题综述[J]. 电网技术, 2009, 33(19): 1-6. Liu Wei, Peng Dong, Bu Guang-quan, et al. A Survey on system problems in smart distribution network with grid-connected photovoltaic generation[J]. Power System Technology, 2009, 33(19): 1-6. [3] 李 斌, 铁生年. 光伏发电接入配电网对供电可靠性的影响[J]. 可再生能源, 2014, 12: 1781-1784. LI Bin, TIE Shengnian. Impact of PV connected to distribution network on power supply reliability[J]. Renewable Energy Resources, 2014, 12: 1781-1784. [4] 杨锡运, 刘欢, 张彬, 等. 基于熵权法的光伏输出功率组合预测模型[J]. 太阳能学报, 2014, 05: 744- 749. Yahg Xiyun, Liu Huan, Zhang Bin, et al. A Com- bination method for photovolatic power forecasting based on entropy weight method[J]. Acta Energiae Solaris Sinica, 2014, 05: 744-749. [5] 王飞, 米增强, 甄钊,等. 基于天气状态模式识别的光伏电站发电功率分类预测方法[J]. 中国电机工程学 报, 2013, 34: 75-82+14. Wang Fei, Mi Zengqiang, Zhen Zhao, et al. A classified forecasting approach of power generation for photo- voltaic plants based on weather condition pattern recognition[J]. Proceedings of the CSEE, 2013, 34: 75-82+14. [6] 叶林, 陈政, 赵永宁. 考虑电池荷电状态的光伏功率分段平滑控制方法[J]. 电网技术, 2014, 07: 1812-1818. Ye Lin, Chen Zheng, Zhao Yongning. A segmented smoothing control method for photovoltaic power considering battery’s state of charge[J]. Power System Technology, 2014, 07: 1812-1818. [7] 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 08: 265-273. Qi Yongzhi, Liu Yutian. Output power rolling optimiza- tion and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China electrotech- nical society, 2014, 08: 265-273. [8] 林少伯, 韩民晓, 赵国鹏, 等. 基于随机预测误差的分布式光伏配网储能系统容量配置方法[J]. 中国电机工程学报, 2013, 04: 25-33+5. Lin Shaobo, Han Minxiao, Zhao Guopeng, et al. Capacity allocation of energy storage in distributed photovoltaic power system based on stochastic predic- tion error[J]. Proceedings of the CSEE, 2013, 04: 25-33+5. [9] 刘冠群, 袁越, 王敏, 等. 考虑经济成本的光伏电站储能容量配置[J]. 可再生能源, 2014, 01: 1-5. Liu Guanqun, Yuan Yue, Wang Min, et al. Energy storage capacity determining of PV plant considering economic cost[J]. Renewable Energy Resources, 2014, 01: 1-5. [10] 朱兰, 严正, 杨秀, 等. 风光储微网系统蓄电池容量优化配置方法研究[J]. 电网技术, 2012, 12: 26-31. Zhu Lan, Yan Zheng, Yang Xiu, et al. Optimal con- figuration of battery capacity in microgrid composed of wind power and photovoltaic generation with energy storage[J]. Power System Technology, 2012, 12: 26-31. [11] 胡国珍, 段善旭, 蔡涛, 等. 基于液流电池储能的光伏发电系统容量配置及成本分析[J]. 电工技术学报, 2012, 05: 260-267. Hu Guozhen, Duan Shanxu, Cai Tao, et al. Sizing and cost analysis of photovoltaic generation system based on vanadium redox battery[J]. Transactions of China electrotechnical society, 2012, 05: 260-267. [12] 吴小刚, 刘宗歧, 田立亭, 等. 独立光伏系统光储容量优化配置方法[J]. 电网技术, 2014, 05: 1271- 1276. Wu Xiaogang, Liu Zongqi, Tian Liting, et al. Optimized capacity configuration of photovoltaic generation and energy storage device for stand-alone photovoltaic generation system[J]. Power System Technology, 2014, 05: 1271-1276. [13] 韩中合, 朱霄珣. 基于信息熵的支持向量回归机训练样本长度选择[J]. 中国电机工程学报, 2010, 20: 112-116. Han Zhonghe, Zhu Xiaoxun. Selection of training sample length in support vector regression based on information entropy[J]. Proceedings of the CSEE, 2010, 20: 112-116. [14] 高品贤. 参数模型建模样本长度的选择[J]. 振动、测试与诊断, 1991, 04: 9-14. Gao Pinxian. Parametric modeling sample size selec- tion[J]. Journal of Vibration, Measurement & Diagnosis [J]. 1991, 04: 9-14. [15] 石来德, 张巨光, 黄珊秋. 随机数据处理中确定样本长度问题的探讨[J]. 建筑机械, 1993, 04: 16-21. Shi Laide, Zhang Juguang, Huang Shanqiu. Inves- tigating of random sample to determine the length of the data processing problem[J]. Construction machinery, 1993, 04: 16-21. [16] Daniel W. Heck, Morten Moshagen, Edgar Erdfelder, Model selection by minimum description length: Lower-bound sample sizes for the Fisher information approximation, Journal of Mathematical Psychology, Volume 60, June 2014, Pages 29-34, ISSN 0022-2496. [17] Ronny Vallejos, Felipe Osorio, Effective sample size of spatial process models, Spatial S, tatistics, Volume 9, August 2014, Pages 66-92, ISSN 2211-6753. [18] Yongwan Chun, Daniel A. Griffith, A quality assess- ment of eigenvector spatial filtering based parameter estimates for the normal probability model, Spatial Statistics, Volume 10, November 2014, Pages 1-11, ISSN 2211-6753.