Abstract:With the improvement of the level of DC transmission and the expansion of the application range, the surface charge accumulation of insulators in DC transmission system has been widely concerned by scholars. In order to suppress the charge accumulation on insulator surface under DC electric field and improve the insulation performance of DC GIS/GIL, accurate measurement of the charge density distribution is a very important step. The inverse calculation of surface charge on insulators is an important step for surface charge density distribution measurement, too. In this paper, based on hybrid Lanczos-Tikhonov method, an inversion algorithm is proposed for “shift-invariant system”. Firstly, the iterative regularization method is introduced, and in each iteration, after projecting the potential-charge transfer matrix to a low-dimensional subspace through Lanczos bidiagonalization, Tikhonov regularization is applied to solve the least squares problem of projection in subspace. At the same time, an adaptive weighted generalized cross validation (A-WGCV) method is introduced to adaptively select the optimal regularization parameter in each iteration. After the iterative calculation is finished according to the iterative stopping condition, the solution of the last iteration is transformed to obtain the complete result of the surface charge density distribution of the insulator. In order to analyze the calculation accuracy of hybrid Lanczos-Tikhonov algorithm, a simulation example is used to simulate the complete calculation process in real measurement. Firstly, the charge density was preset by COMSOL, and the corresponding surface potential distribution was calculated. After the data with different degrees of Gaussian noise are superimposed on the potential distribution data, Lanczos-Tikhonov hybrid algorithm, Wiener filtering method and apparent charge method are used to carry out inversion calculation for this example respectively. The calculation time and inversion image of the three methods are compared in this paper. In addition, the SNR and $\sqrt{\text{PMSE}}$ of the data results obtained by the first two algorithms are analyzed. Analysis shows that the accuracy and computational efficiency of the proposed algorithm in this paper are outstanding. Finally, in order to further verify the correctness of the inversion algorithm, the Lichtenberg figures is used to characterize the real charge distribution on the insulator surface. After negative polarity voltage was applied to the insulator surface by needle electrode, the surface potential of the insulator was measured and inverted by hybrid Lanczos-Tikhonov algorithm, Wiener filtering method and apparent charge method to obtain the charge distribution, which was compared with the Lichtenberg figures. It is proved that the hybrid Lanczos-Tikhonov algorithm can well restore the surface charge distribution of the insulator, and the image contour obtained by the hybrid Lanczos-Tikhonov algorithm is basically consistent with the Lichtenberg image. On this basis, the needle electrode is further used to apply different negative polarity voltage to the insulator surface, and the inversion results of hybrid Lanczos-Tikhonov algorithm are compared with the Lichtenberg image to verify the effectiveness of the algorithm. The experimental results also show that, with the increase of the applied voltage, the polarity of the accumulated charge in the insulator area aligned with the needle electrode will be reversed, and original negative polarity "round spot" charge will become "crescent shape" surrounding the positive polarity charge spot.
毛诗壹, 潘成, 罗毅, 邱宇杰, 唐炬. 基于混合Lanczos-Tikhonov算法的绝缘子表面电荷反演计算[J]. 电工技术学报, 2023, 38(7): 1921-1934.
Mao Shiyi, Pan Cheng, Luo Yi, Qiu Yujie, Tang Ju. Inversion Algorithm for Surface Charge on Insulator Based on Hybrid Lanczos-Tikhonov Algorithm. Transactions of China Electrotechnical Society, 2023, 38(7): 1921-1934.
[1] 唐炬, 潘成, 王邸博, 等. 高压直流绝缘材料表面电荷积聚研究进展[J]. 电工技术学报, 2017, 32(8): 10-21. Tang Ju, Pan Cheng, Wang Dibo, et al.Development of studies about surface charge accumulation on insulating material under HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 10-21. [2] 张贵新, 李大雨, 王天宇. 交流电压下气固界面电荷积聚与放电特性研究进展[J]. 电工技术学报, 2022, 37(15): 3876-3887. Zhang Guixin, Li Dayu, Wang Tianyu.Progress in researching charge accumulation and discharge characteristics at gas-solid interface under AC voltage[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3876-3887. [3] 田汇冬, 李乃一, 吴泽华, 等. 直流GIL柱式绝缘子表面电荷积聚特性[J]. 电工技术学报, 2018, 33(22): 5178-5188. Tian Huidong, Li Naiyi, Wu Zehua, et al.Accumulation characteristics of surface charge for post insulators of DC enclosed transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5178-5188. [4] 齐波, 张贵新, 李成榕, 等. 气体绝缘金属封闭输电线路的研究现状及应用前景[J]. 高电压技术, 2015, 41(5): 1466-1473. Qi Bo, Zhang Guixin, Li Chengrong, et al.Research status and prospect of gas-insulated metal enclosed transmission line[J]. High Voltage Engineering, 2015, 41(5): 1466-1473. [5] 王涵, 薛建议, 陈俊鸿, 等. SF6/N2混合气体中金属微粒对GIL盆式绝缘子表面电荷积聚特性的影响[J]. 电工技术学报, 2018, 33(20): 4663-4671. Wang Han, Xue Jianyi, Chen Junhong, et al.Influence of metal particles on surface charge accumulation characteristics of GIL spacer in SF6/N2 mixture[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4663-4671. [6] Liang Zuodong, Lin Chuanjie, Liang Fangwei, et al.Designing HVDC GIS/GIL spacer to suppress charge accumulation[J]. High Voltage, 2022, 7(4): 645-651. [7] Zhang Lei, Lin Chuanjie, Li Chuanyang, et al.Gas-solid interface charge characterisation techniques for HVDC GIS/GIL insulators[J]. High Voltage, 2020, 5(2): 95-109. [8] 穆海宝, 张冠军, 郑楠, 等. Pockels效应表面电荷测量中电荷反演算法的研究[J]. 中国电机工程学报, 2011, 31(13): 135-141. Mu Haibao, Zhang Guanjun, Zheng Nan, et al.Charge inversion algorithm in surface charge measurement based on pockels effect[J]. Proceedings of the CSEE, 2011, 31(13): 135-141. [9] 薛建议, 王涵, 李科峰, 等. 直流GIL中盆式绝缘子表面电荷分布特性研究[J]. 中国电机工程学报, 2018, 38(20): 6164-6172. Xue Jianyi, Wang Han, Li Kefeng, et al.Research on charge distribution characteristics on spacer surface in DC GIL[J]. Proceedings of the CSEE, 2018, 38(20): 6164-6172. [10] Pedersen A.On the electrostatics of probe measurements of surface charge densities[C]//Gaseous Dielectrics V: Proceedings of the Fifth International Symposium on Gaseous Dielectrics, Knoxville, Tennessee, USA, 1987: 235-241. [11] Davies D K.The examination of the electrical properties of insulators by surface charge measurement[J]. Journal of Scientific Instruments, 1967, 44(7): 521-524. [12] 汪沨, 胡红利, 张乔根, 等. 用于绝缘子表面电荷测量的电容探头法的标度问题[J]. 高压电器, 2002, 38(2): 40-43. Wang Feng, Hu Hongli, Zhang Qiaogen, et al.Calibration of capacitive probe measurement for insulator surface charge[J]. High Voltage Apparatus, 2002, 38(2): 40-43. [13] 刘文静, 汪沨, 印峰, 等. 固体绝缘材料空间及表面电荷测量方法[J]. 绝缘材料, 2006, 39(6): 59-61, 64. Liu Wenjing, Wang Feng, Yin Feng, et al.Measurement of space charge and surface charge accumulated in solid dielectrics[J]. Insulating Materials, 2006, 39(6): 59-61, 64. [14] Zhang Boya, Zhang Guixin.Interpretation of the surface charge decay kinetics on insulators with different neutralization mechanisms[J]. Journal of Applied Physics, 2017, 121(10): 105105. [15] Rerup T O, Crichton G C, McAllister I W. Using the λ function to evaluate probe measurements of charged dielectric surfaces[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(6): 770-777. [16] Faircloth D C, Allen N L.High resolution measurements of surface charge densities on insulator surfaces[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2): 285-290. [17] Ootera H, Nakanishi K.Analytical method for evaluating surface charge distribution on a dielectric from capacitive probe measurement-application to a cone-type spacer in ±500 kV DC-GIS[J]. IEEE Transactions on Power Delivery, 1988, 3(1): 165-172. [18] Zhang Boya, Gao Wenqiang, Qi Zhe, et al.Inversion algorithm to calculate charge density on solid dielectric surface based on surface potential measurement[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(12): 3316-3326. [19] Kumada A, Okabe S, Hidaka K.Resolution and signal processing technique of surface charge density measurement with electrostatic probe[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(1): 122-129. [20] 邓军波, 王涵, 薛建议, 等. 基于静电探头法的表面电荷密度分布及电场分布的改进反演算法研究[J]. 中国电机工程学报, 2018, 38(4): 1239-1247, 1301. Deng Junbo, Wang Han, Xue Jianyi, et al.Improved reverse algorithm of surface charge density distribution and electric field distribution based on electrostatic probe[J]. Proceedings of the CSEE, 2018, 38(4): 1239-1247, 1301. [21] 潘子君, 潘成, 唐炬, 等. 基于图像复原技术与约束最小二乘方滤波器的绝缘子表面电荷反演算法[J]. 电工技术学报, 2021, 36(17): 3627-3638. Pan Zijun, Pan Cheng, Tang Ju, et al.Inversion algorithm for surface charge on insulator based on image restoration technology and constrained least square filter[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3627-3638. [22] Bracewell R N.Fourier analysis and imaging[M]. New York: Springer-Science+Business Media, 2003. [23] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅰ: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4649-4662. [24] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ: 电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [25] 薛建议, 王涵, 李科峰, 等. 圆台形绝缘子的表面电荷密度反演算法[J]. 高电压技术, 2019, 45(11): 3554-3561. Xue Jianyi, Wang Han, Li Kefeng, et al.Inverse algorithm for surface charge of cone-type spacer[J]. High Voltage Engineering, 2019, 45(11): 3554-3561. [26] 闫纪源, 梁贵书, 段祺君, 等. 等离子体表面阶跃型梯度硅沉积对环氧树脂闪络性能的影响[J]. 电工技术学报, 2022, 37(9): 2377-2387. Yan Jiyuan, Liang Guishu, Duan Qijun, et al.Effect of plasma surface step gradient silicon deposition on flashover properties of epoxy resin[J]. Transactions of China Electrotechnical Society, 2022, 37(9): 2377-2387. [27] 胡琦, 李庆民, 刘智鹏, 等. 基于表层梯度电导调控的直流三支柱绝缘子界面电场优化方法[J]. 电工技术学报, 2022, 37(7): 1856-1865. Hu Qi, Li Qingmin, Liu Zhipeng, et al.Interfacial electric field optimization of DC tri-post insulator based on gradient surface conductance regulation[J]. Transactions of China Electrotechnical Society, 2022, 37(7): 1856-1865. [28] 李传扬, 林川杰, 陈庚, 等. 高压直流盆式绝缘子气-固界面电荷行为研究综述[J]. 中国电机工程学报, 2020, 40(6): 2016-2026. Li Chuanyang, Lin Chuanjie, Chen Geng, et al.Review of gas-solid interface charging phenomena of HVDC spacers[J]. Proceedings of the CSEE, 2020, 40(6): 2016-2026. [29] Hansen P C.Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems[J]. Numerical Algorithms, 1994, 6(1): 1-35. [30] 易丽娅. 图像复原的Bregman迭代正则化方法研究[D]. 武汉: 华中科技大学, 2011. [31] 杨艳飞. 一般形式正则化的大规模离散线性不适定问题算法的研究[D]. 北京: 清华大学, 2018. [32] 薛乃凡, 李庆民, 刘智鹏, 等. 微纳粉尘运动行为与微弱放电探测技术研究进展[J]. 电工技术学报, 2022, 37(13): 3380-3392. Xue Naifan, Li Qingmin, Liu Zhipeng, et al.Research advances of the detection technology for kinetic behavior and weak discharge of the micro-nano dust[J]. Transactions of China Electrotechnical Society, 2022, 37(13): 3380-3392.