Abstract:Hybrid DC circuit breaker (HDCCB) is the primary scheme for DC grid fault isolation. However, the existing HDCCB has the problem of high energy absorption and insufficient fault isolation speed. In view of the above problems, A fast fault isolation method for DC transmission lines based on distributed energy dissipation was proposed, which is based on the topology of traditional HDCCB, and add a bypass energy dissipation branch (energy dissipation branch 2). In this method, a small part of energy can be dissipated quickly by the energy dissipation branch of DCCB (energy dissipation branch 1) to realize DC fault isolation firstly, and then the residual energy of DC reactor and the DC line can be dissipated by the bypass energy dissipation branch. The scheme can greatly shorten the fault isolation time, thus reducing the energy fed into the DC power grid by power supply, and effectively reduce the total energy consumption level in single fault isolation. At the same time, the distributed energy dissipation structure can significantly reduce the level of energy absorption and the parallel branches of metal oxide varistor (MOV), and contribute to dynamic current sharing. In this paper, the working principle and control strategy of the scheme were analyzed in detail, and compared with the existing schemes in economy and technology. Finally, the feasibility and effectiveness of the scheme were validated by the simulation.
司马文霞, 赵俊宁, 杨鸣, 付峥争, 韩雪. 分体式能量耗散的直流线路故障快速隔离[J]. 电工技术学报, 2022, 37(zk1): 126-133.
Sima Wenxia, Zhao Junning, Yang Ming, Fu Zhengzheng, Han Xue. A Fast Fault Isolation Method for DC Transmission Lines Based on Distributed Energy Dissipation. Transactions of China Electrotechnical Society, 2022, 37(zk1): 126-133.
[1] 李国庆, 边竞, 王鹤, 等. 适用于直流电网的环流式线间直流潮流控制器[J]. 电工技术学报, 2020, 35(5): 1118-1127. Li Guoqing, Bian Jing, Wang He, et al.A circulating current interline DC power flow controller for DC grid[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1118-1127. [2] 王聪博, 贾科, 赵其娟, 等. 基于故障全电流相关性检验的柔性直流配电线路纵联保护[J]. 电工技术学报, 2020, 35(8): 1764-1775. Wang Congbo, Jia Ke, Zhao Qijuan, et al.Pilot protection for flexible-DC distribution line based on correlation test of DC current[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1764-1775. [3] 吴杰, 李传江, 周鸣, 等. 柔性直流配电网混合拓扑变流器的自治控制[J]. 电工技术学报, 2020, 35(24): 5175-5186. Wu Jie, Li Chuanjiang, Zhou Ming, et al.Grid forming control of hybrid topology converter for flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2020, 35(24): 5175-5186. [4] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望[J]. 中国电机工程学报, 2014, 34(29): 5051-5062. Xu Zheng, Xue Yinglin, Zhang Zheren.VSC-HVDC technology suitable for bulk power overhead line transmission[J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062. [5] 张梓莹, 梁德世, 蔡淼中, 等. 机械式高压直流真空断路器换流参数研究[J]. 电工技术学报, 2020, 35(12): 2554-2561. Zhang Ziying, Liang Deshi, Cai Miaozhong, et al.Research on commutation parameters of mechanical HVDC vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2554-2561. [6] 杨田, 刘晓明, 吴其, 等. 单向直流断路器拓扑与保护策略分析[J]. 电工技术学报, 2020, 35(增刊1): 259-266. Yang Tian, Liu Xiaoming, Wu Qi, et al.Analysis on the unidirectional DC circuit breaker and protection strategy[J]. Proceedings of the CSEE, 2020, 35(S1): 259-266. [7] 许建中, 冯谟可, 赵西贝. 一种单钳位模块型往复限流式高压直流断路器拓扑[J]. 中国电机工程学报, 2019, 39(18): 5565-5574, 5605. Xu Jianzhong, Feng Moke, Zhao Xibei.A topology of clamped single module type reciprocating high voltage DC circuit breakers with current-limiting capability[J]. Proceedings of the CSEE, 2019, 39(18): 5565-5574, 5605. [8] 彭发喜, 汪震, 邓银秋, 等. 混合式直流断路器在柔性直流电网中应用初探[J]. 电网技术, 2017, 41(7): 2092-2098. Peng Faxi, Wang Zhen, Deng Yinqiu, et al.Potentials of hybrid HVDC circuit breakers' application to MMC-HVDC grid[J]. Power System Technology, 2017, 41(7): 2092-2098. [9] 叶晗, 陈武. 基于预充电电容的新型混合直流断路器[J]. 中国电机工程学报, 2018, 38(20): 5992-6000. Ye Han, Chen Wu.A novel hybrid DC circuit breaker based on pre-charged capacitors[J]. Proceedings of the CSEE, 2018, 38(20): 5992-6000. [10] Han Xue, Sima Wenxia, Yang Ming, et al.Transient characteristics under ground and short-circuit faults in a MMC-based HVDC system with hybrid DC circuit breakers[J]. IEEE Transactions on Power Delivery, 2018, 33(3): 1378-1387. [11] 李博伟, 郝全睿, 尹晓东, 等. 考虑快速重合闸的快速泄流型混合式直流断路器[J]. 高电压技术, 2020, 46(10): 3688-3698. Li Bowei, Hao Quanrui, Yin Xiaodong, et al.Rapidly energy dissipating hybrid DC circuit breaker considering fast reclosing[J]. High Voltage Engineering, 2020, 46(10): 3688-3698. [12] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Topology overview of medium and high voltage DC circuit breaker[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [13] 严俊, 许建中, 赵成勇. 高压直流断路器中能量吸收支路设计方法综述[J]. 中国电机工程学报, 2019, 39(14): 4301-4314, 4325. Yan Jun, Xu Jianzhong, Zhao Chengyong.A review of design methods for energy absorption path design in high voltage direct current circuit breakers[J]. Proceedings of the CSEE, 2019, 39(14): 4301-4314, 4325. [14] 赵西贝, 宋冰倩, 许建中, 等. 适用于直流电网的自旁路型故障限流器研究[J]. 中国电机工程学报, 2019, 39(19): 5724-5731, 5900. Zhao Xibei, Song Bingqian, Xu Jianzhong, et al.Research on fault current limiter suitable for DC grid with self-bypassing capability[J]. Proceedings of the CSEE, 2019, 39(19): 5724-5731, 5900. [15] Fu Zhengzheng, Sima Wenxia, Yang Ming, et al.A mutual-inductance-type fault current limiter in MMC-HVDC systems[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2403-2413. [16] 刘麒麟, 张英敏, 陈若尘, 等. 张北柔直电网单极接地故障机理分析[J]. 电网技术, 2020, 44(8): 3172-3179. Liu Qilin, Zhang Yingmin, Chen Ruochen, et al.Pole-to-ground fault mechanism in Zhangbei flexible DC power grid[J]. Power System Technology, 2020, 44(8): 3172-3179. [17] 汪楠楠, 姜崇学, 王佳成, 等. 采用直流断路器的对称单极多端柔性直流故障清除策略[J]. 电力系统自动化, 2019, 43(6): 122-130. Wang Nannan, Jiang Chongxue, Wang Jiacheng, et al.Fault elimination strategy of symmetric single-pole VSC-MTDC based on DC circuit breaker[J]. Automation of Electric Power Systems, 2019, 43(6): 122-130. [18] 黄金强. 微网混合式直流断路器电流转移理论及应用研究[D]. 大连: 大连理工大学, 2018.