Structural Optimization Design of Cup-Shaped Longitudinal Magnetic Contact Based on NSGA-II and BP Neural Network
Ding Can1, Li Jiang1, Yuan Zhao2, Chen Lixue2, Liu Liming2
1. College of Electrical Engineering & New Energy China Three Gorges University Yichang 443002 China; 2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract:Under the DC breaking condition, the existing common power frequency contacts need to break the high-frequency reverse current, but their arc regulation performance under high-frequency current needs further study. In this paper, the cup-shaped longitudinal magnetic contact commonly used in power frequency is taken as an example. Firstly, the magnetic field simulation of the cup-shaped longitudinal magnetic contact is carried out under the current of 1 000Hz. It is found that the center of the contact gap with the peak current can generate a longitudinal magnetic field of 3.17mT/kA, and the magnetic field distribution is extremely uneven. Then, in order to improve the maximum magnetic field strength and distribution uniformity, a method based on the combination of BP neural network and genetic algorithm is proposed to optimize the contact structure, and a BP neural network model is established, which takes the contact slot width, slot length, radial slot rotation angle, contact cup chute height and chute inclination as inputs, and takes the maximum magnetic field strength and distribution unevenness of the peak current in the center of the contact gap as outputs. Finally, the structural parameters of the cup-shaped longitudinal magnetic contact are optimized by NSGA-II algorithm. The optimization results show that when the parameters L1 is 2.9mm, L2 is 18.0 mm, θ1 is 20.0°, H is 17.5mm and θ2 is 26.0°, the center of the contact gap with peak current can generate a longitudinal magnetic field of 4.34mT/kA, and the unevenness is reduced from 6.89 to 3.39, which greatly improves the uniformity, thus improving the ability of the longitudinal magnetic field to regulate the vacuum arc.
丁璨, 李江, 袁召, 陈立学, 刘黎明. 基于NSGA-II和BP神经网络的杯状纵磁触头结构优化设计[J]. 电工技术学报, 2022, 37(23): 6074-6082.
Ding Can, Li Jiang, Yuan Zhao, Chen Lixue, Liu Liming. Structural Optimization Design of Cup-Shaped Longitudinal Magnetic Contact Based on NSGA-II and BP Neural Network. Transactions of China Electrotechnical Society, 2022, 37(23): 6074-6082.
[1] 温家良, 吴锐, 彭畅, 等. 直流电网在中国的应用前景分析[J]. 中国电机工程学报, 2012, 32(13): 7-12, 185. Wen Jialiang, Wu Rui, Peng Chang, et al.Analysis of DC grid prospects in China[J]. Proceedings of the CSEE, 2012, 32(13): 7-12, 185. [2] Zhang Shao, Tseng K J, Vilathgamuwa D M, et al.Design of a robust grid interface system for PMSG-based wind turbine generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 316-328. [3] 陈名, 黎小林, 许树楷, 等. 机械式高压直流断路器工程应用研究[J]. 全球能源互联网, 2018, 1(4): 423-429. Chen Ming, Li Xiaolin, Xu Shukai, et al.Engineering application research for mechanical HVDC circuit breaker[J]. Journal of Global Energy Interconnection, 2018, 1(4): 423-429. [4] 于海. 直流断路器的现状及发展[J]. 电力工程技术, 2018, 37(2): 114-120. Yu Hai.The status and development of DC circuit breaker[J]. Electric Power Engineering Technology, 2018, 37(2): 114-120. [5] 王灿, 杜船, 徐杰雄. 中高压直流断路器拓扑综述[J]. 电力系统自动化, 2020, 44(9): 187-199. Wang Can, Du Chuan, Xu Jiexiong.Review of topologies for medium-and high-voltage DC circuit breaker[J]. Automation of Electric Power Systems, 2020, 44(9): 187-199. [6] 陈名, 徐敏, 黎小林, 等. 高压直流断路器开断试验方法综述[J]. 高压电器, 2018, 54(7): 37-43. Chen Ming, Xu Min, Li Xiaolin, et al.Review of HVDC circuit breaker breaking test method[J]. High Voltage Apparatus, 2018, 54(7): 37-43. [7] 卫思明. 高压直流断路器关键技术研究[D]. 北京: 华北电力大学, 2015. [8] 张梓莹, 梁德世, 蔡淼中, 等. 机械式高压直流真空断路器换流参数研究[J]. 电工技术学报, 2020, 35(12): 2554-2561. Zhang Ziying, Liang Deshi, Cai Miaozhong, et al.Research on commutation parameters of mechanical HVDC vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2554-2561. [9] 李培源. 低压直流真空断路器换流回路拓扑与灭弧室结构优化设计[D]. 天津: 天津工业大学, 2020. [10] 修士新, 庞先海, 张敏. 真空灭弧室横向磁场触头间磁吹力的计算分析[J]. 真空电子技术, 2007(5): 19-22. Xiu Shixin, Pang Xianhai, Zhang Min.Computation and analysis of magnetic blowout forces in transverse magnetic field contacts of vacuum interrupter[J]. Vacuum Electronics, 2007(5): 19-22. [11] 段肖力, 修士新, 吴水锋, 等. 真空开关横磁触头磁场仿真与电弧特性研究[J]. 高压电器, 2017, 53(3): 57-63. Duan Xiaoli, Xiu Shixin, Wu Shuifeng, et al.Characteristic of wan-type transverse magnetic field contacts of vacuum circuit breaker[J]. High Voltage Apparatus, 2017, 53(3): 57-63. [12] 孙鹏, 邵淑文. 新型真空灭弧室1/3匝线圈纵磁触头三维磁场仿真[J]. 高压电器, 2010, 46(6): 60-63. Sun Peng, Shao Shuwen.3-D magnetic filed simulation of a novel axial magnetic field contact for vacuum interrupter[J]. High Voltage Apparatus, 2010, 46(6): 60-63. [13] 郝建成, 杨嘉祥, 王新掌, 等. 126kV真空灭弧室1/2线圈纵磁触头三维磁场仿真[J]. 中国电机工程学报, 2007, 27(18): 83-88. Hao Jiancheng, Yang Jiaxiang, Wang Xinzhang, et al.Simulation of 3-D magnetic filed in two segments coil axial magnetic field contact of 126kV vacuum interrupter[J]. Proceedings of the CSEE, 2007, 27(18): 83-88. [14] 韩国辉, 李昊旻, 韩桂全, 等. 126kV真空灭弧室2/3匝纵磁触头磁场分析及优化[J]. 高压电器, 2017, 53(3): 76-83. Han Guohui, Li Haomin, Han Guiquan, et al.Analysis and optimization of axial magnetic field characteristics of a 2/3 tune coil-type contacts for 126kV vacuum interrupter[J]. High Voltage Apparatus, 2017, 53(3): 76-83. [15] 杨海军. 一种新型杯状纵磁真空灭弧室设计及电磁场仿真[D]. 大连: 大连交通大学, 2015. [16] 陈廷栋. 基于人工过零开断的杯状纵磁真空灭弧室触头结构优化[D]. 武汉: 华中科技大学, 2019. [17] 陈得胜, 白新奎, 张振民, 等. 基于人工神经网络和遗传算法的动叶可调轴流风机后导叶数值优化[J]. 热力发电, 2021, 50(10): 142-149. Chen Desheng, Bai Xinkui, Zhang Zhenmin, et al.Numerical optimization for outlet guide vane of an adjustable rotor blade axial fan based on artificial neural network and genetic algorithm[J]. Thermal Power Generation, 2021, 50(10): 142-149. [18] 刘晓明, 刘威, 李龙女, 等. 基于改进神经网络和遗传算法的真空灭弧室优化设计[J]. 真空科学与技术学报, 2020, 40(4): 359-364. Liu Xiaoming, Liu Wei, Li Longnü, et al.Optimal design of vacuum interrupter based on improved neural network and genetic algorithm[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(4): 359-364. [19] 王春林, 胡蓓蓓, 冯一鸣, 等. 基于径向基神经网络与粒子群算法的双叶片泵多目标优化[J]. 农业工程学报, 2019, 35(2): 25-32. Wang Chunlin, Hu Beibei, Feng Yiming, et al.Multi-objective optimization of double vane pump based on radial basis neural network and particle swarm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 25-32. [20] 何嘉华, 周宏甫, 刘二辉, 等. 基于神经网络和遗传算法的温差发电器优化设计[J]. 机械设计, 2018, 35(9): 31-36. He Jiahua, Zhou Hongfu, Liu Erhui, et al.Optimization design of thermoelectric generator based on neural network and genetic algorithm[J]. Journal of Machine Design, 2018, 35(9): 31-36. [20] 颜华, 张馨, 王伊凡. 基于RBF神经网络和遗传算法的ERT传感器优化[J]. 沈阳工业大学学报, 2021, 43(3): 295-300. Yan Hua, Zhang Xin, Wang Yifan.ERT sensor optimization based on RBF neural network and genetic algorithm[J]. Journal of Shenyang University of Technology, 2021, 43(3): 295-300. [21] 褚辉, 赖惠成. 一种改进的BP神经网络算法及其应用[J]. 计算机仿真, 2007, 24(4): 75-77, 111. Chu Hui, Lai Huicheng.An improved back-propagation NN algorithm and its application[J]. Computer Simulation, 2007, 24(4): 75-77, 111. [22] Wang Zheng, Wang Bo, Liu Chun, et al.Improved BP neural network algorithm to wind power forecast[J]. The Journal of Engineering, 2017, 2017(13): 940-943. [23] Wang Jing, Fang Jiandong, Zhao Y.Visual prediction of gas diffusion concentration based on regression analysis and BP neural network[J]. The Journal of Engineering, 2019, 2019(13): 19-23. [24] 司红. 涡流对真空灭弧室开断电流的影响[J]. 真空电子技术, 2011(1): 53-55. Si Hong.Eddy Current influence on breaking current of vacuum interrupter[J]. Vacuum Electronics, 2011(1): 53-55. [25] Ac01273015 A. Studies in applied electromagnetics and mechanics[J]. Computer Field Models of Electromagnetic Devices, 2010(34): 558-564. [26] Okawa M, Yanabu S, Kaneko E, et al.The investigation of copper-chromium contacts in vacuum interrpters subjected to an axial magnetic field[J]. IEEE Transactions on Plasma Science, 1987, 15(5): 533-537. [27] 刘思奇, 沈兵, 庄劲武, 等. 混合型真空限流断路器短燃弧短间隙下的介质强度恢复试验研究[J]. 电工技术学报, 2020, 35(2): 284-291. Liu Siqi, Shen Bing, Zhuang Jinwu, et al.Experimental study on vacuum dielectric recovery of hybrid current limiting circuit breaker with short arcing time and short gap[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 284-291. [28] 李博, 包涌泉, 彭振东, 等. 基于改进型直流真空断路器弧后暂态仿真及介质恢复特性分析[J]. 电工技术学报, 2021, 36(8): 1752-1760. Li Bo, Bao Yongquan, Peng Zhendong, et al.Post-arc transient simulation and dielectric recovery analysis based on improved DC vacuum circuit breaker[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1752-1760. [29] 王子寒, 李昊旻, 王建华, 等. 基于响应曲面法的马蹄铁型纵磁触头真空灭弧室磁场特性分析及优化[J]. 高压电器, 2017, 53(3): 90-96. Wang Zihan, Li Haomin, Wang Jianhua, et al.Analysis and optimization of magnetic field characteristics for vacuum interrupter with horseshoe-shaped axial magnetic field contacts based on response surface method[J]. High Voltage Apparatus, 2017, 53(3): 90-96. [30] 蒋原, 李擎, 崔家瑞, 等. 纵向磁场下中频真空电弧的重燃现象分析[J]. 电工技术学报, 2020, 35(18): 3860-3868. Jiang Yuan, Li Qing, Cui Jiarui, et al.Re-ignition of intermediate frequency vacuum arc at axial magnetic field[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3860-3868. [31] 付思, 曹云东, 李静, 等. 触头分离瞬间真空金属蒸气电弧形成过程的仿真[J]. 电工技术学报, 2020, 35(13): 2922-2931. Fu Si, Cao Yundong, Li Jing, et al.Simulation researches on vacuum metal vapor arc formation at the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931.