Abstract:This paper proposed an equivalent magnetization curve-based transformer protection. The transformer operation states are essentially affected by iron core and intuitively demonstrated by magnetization hysteresis loop. Firstly, based on the analysis of magnetization hysteresis loop, the correspondence between equivalent magnetization curves and operation states was shown in this paper. Secondly, several extracted geometric characteristics were used as input to BP neural network, which was trained with a small amount of training data to identify transformer operation states. Finally, digital simulation and dynamic-model experiments were conducted to verify the proposed scheme. The results of 100% showed that the classification model with a small amount of training data could accurately identify transformer operation states. Moreover, this classification model had higher generalization ability, not affected by CT saturation and over-excitation. The proposed scheme solves effectively the poor performance of AI technique in power system, which has a great application value.
[1] Sharp R L, Glassburn W E.A transformer differential relay with second-harmonic restraint[J]. Transactions of the American Institute of Electrical Engineers Part III Power Apparatus & Systems, 2008, 77(3): 913-918. [2] 朱亚明, 郑玉平, 叶锋, 等. 间断角原理的变压器差动保护的性能特点及微机实现[J]. 电力系统自动化, 1996, 20(11): 36-40. Zhu Yaming, Zheng Yuping, Ye Feng, et al.Performance and digital realization of transformer differential relay based on dead angle philosophy[J]. Automation of Electric Power Systems, 1996, 20(11): 36-40. [3] 马静, 王增平, 王雪. 基于等效瞬时漏电感的变压器保护新原理[J]. 电力系统自动化, 2006, 30(23): 64-68. Ma Jing, Wang Zengping, Wang Xue.Novel principle of power transformer protection based on equivalent instantaneous leakage inductance[J]. Automation of Electric Power Systems, 2006, 30(23): 64-68. [4] 郝治国, 张保会, 褚云龙, 等. 基于等值回路平衡方程的变压器保护原理[J]. 中国电机工程学报, 2006, 26(10): 67-72. Hao Zhiguo, Zhang Baohui, Chu Yunlong, et al.Study on transformer protection principle based on equivalent circuit equilibrium equation[J]. Proceedings of the CSEE, 2006, 26(10): 67-72. [5] 焦在滨, 马涛, 屈亚军, 等. 基于励磁电感参数识别的快速变压器保护[J]. 中国电机工程学报, 2014, 34(10): 1658-1666. Jiao Zaibin, Ma Tao, Qu Yajun, et al.A novel excitation inductance-based power transformer protection scheme[J]. Proceedings of the CSEE, 2014, 34(10): 1658-1666. [6] Ge Baoming, Almeida A T D, Zheng Qionglin, et al. An equivalent instantaneous inductance-based technique for discrimination between inrush current and internal faults in power transformers[J]. IEEE Transactions on Power Delivery, 2005, 20(4): 2473-2482. [7] 黎功华, 罗建, 杨浩. 基于绕组不平衡参数回路方程的变压器保护原理[J]. 电力系统自动化, 2008, 32(6): 91-94. Li Gonghua, Luo Jian, Yang Hao.A new transformer protection principle based on winding unbalanced parameter loop equation[J]. Automation of Electric Power Systems, 2008, 32(6): 91-94. [8] Barbosa D, Netto U C, Coury D V, et al.Power transformer differential protection based on clarke's transform and fuzzy systems[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1212-1220. [9] Medeiros R P, Costa F B, Silva K M.Power transformer differential protection using the boundary discrete wavelet transform[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2083-2095. [10] 吴青华, 张东江. 形态滤波技术及其在继电保护中的应用[J]. 电力系统自动化, 2003, 27(7): 45-49. Wu Qinghua, Zhang Dongjiang.Morphological filtering techniques and applications in protection relaying[J]. Automation of Electric Power Systems, 2003, 27(7): 45-49. [11] 翁汉琍, 王胜, 林湘宁, et al.基于波形相似度的抗电流互感器饱和变压器相位差动保护[J]. 电力系统自动化, 2019, 43(4): 132-138. Weng Hanli, Wang Sheng, Lin Xiangning, et al.Waveform similarity based transformer phase differential protection against current transformer saturation[J]. Automation of Electric Power Systems, 2019, 43(4): 132-138. [12] Segatto E C, Coury D V.A differential relay for power transformers using intelligent tools[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1154-1162. [13] Barbosa D, Coury D V, Oleskovicz M.New approach for power transformer protection based on intelligent hybrid systems[J]. IET Generation Transmission & Distribution, 2012, 6(10): 1009-1018. [14] Tripathy M, Maheshwari R P, Verma H K.Power transformer differential protection based on optimal probabilistic neural network[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 102-112. [15] Shah A M, Bhalja B R.Fault discrimination scheme for power transformer using random forest technique[J]. IET Generation Transmission & Distribution, 2016, 10(6): 1431-1439. [16] Mohamed E A, Abdelaziz A Y, Mostafa A S.A neural network-based scheme for fault diagnosis of power transformers[J]. Electric Power Systems Research, 2005, 75(1): 29-39. [17] 李海锋, 王钢, 李晓华, 等. 电力变压器励磁涌流判别的自适应小波神经网络方法[J]. 中国电机工程学报, 2005, 25(7): 144-150. Li Haifeng, Wang Gang, Li Xiaohua, et al.Distinguish between inrush and internal fault of transformer based on adaptive wavelet neural network[J]. Proceedings of the CSEE, 2005, 25(7): 144-150. [18] 黎功华. 基于人工神经网络模型的变压器保护原理[J]. 电力系统保护与控制, 2010, 38(10): 26-30. Li Gonghua.Transformer protection principle based on the artificial neural network model[J]. Power System Protection and Control, 2010, 38(10): 26-30. [19] 黄永红, 马锋, 沈敏. 基于最小二乘支持向量机的变压器励磁涌流识别方法研究[J]. 电力系统保护与控制, 2010, 38(23): 93-96. Huang Yonghong, Ma Feng, Shen Min.Research of magnetizing inrush current identification method based on LS-SVM[J]. Power System Protection and Control, 2010, 38(23): 93-96. [20] 祝磊, 丘毅昌, 张蓉蓉, 等. 基于数学形态谱和LS-SVM的变压器励磁涌流和短路电流识别方法[J]. 电网技术, 2008, 32(增刊1): 87-89. Zhu Lei, Qiu Yichang, Zhang Rongrong, et al.Recognition of inrush current and fault current based on pattern spectrum and LS-SVM[J]. Power System Technology, 2008, 32(S1): 87-89. [21] 王世勇, 孙鸣, 丁中奎. 一种基于支持向量机的变压器励磁涌流判别新方法[J]. 继电器, 2008, 36(5): 1-6. Wang Shiyong, Sun Ming, Ding Zhongkui.A new scheme to distinguish between inrush current and internal fault of transformer based on support vector machine[J]. Relay, 2008, 36(5): 1-6. [22] 李臻, 罗林根, 盛戈皞, 等. 基于压缩感知的特高频局部放电定位法[J]. 电工技术学报, 2018, 33(1): 202-208. Li Zhen, Luo Lingen, Sheng Gehao, et al.Ultrahigh frequency partial discharge localization methodology based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 202-208. [23] 左曙光, 刘洋, 邓文哲. 轴向磁通轮毂电机电磁力波灵敏度分析和优化[J]. 电工技术学报, 2018, 33(11): 2423-2430. Zuo Shuguang, Liu Yang, Deng Wenzhe.Sensitivity analysis and optimization of electromagnetic force wave of an axial-flux in-wheel motor[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2423-2430. [24] 彭道刚, 陈跃伟, 钱玉良, 等. 基于粒子群优化-支持向量回归的变压器绕组温度软测量模型[J]. 电工技术学报, 2018, 33(8): 1742-1749. Peng Daogang, Chen Yuewei, Qian Yuliang, et al.Transformer winding temperature soft measurement model based on particle swarm optimization-support vector regression[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1742-1749. [25] 赵希梅, 吴勇慷. 基于自适应修正拉盖尔递归神经网络的永磁直线同步电机反推控制[J]. 电工技术学报, 2018, 33(10): 2392-2399. Zhao Ximei, Wu Yongkang.Backstepping control based on adaptive modified laguerre recurrent neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2392-2399. [26] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018, 33(11): 137-146. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 137-146. [27] 朱元振, 刘玉田. 基于深度学习直流闭锁判断的高风险连锁故障快速搜索[J]. 电力系统自动化, 2019, 43(22): 59-67. Zhu Yuanzhen, Liu Yutian.Fast search for high-risk cascading failures based on deep learning DC blocking judgment[J]. Automation of Electric Power Systems, 2019, 43(22): 59-67. [28] 赵晓坦, 柴建云, 苏鹏声, 等. 利用磁通轨迹特征识别变压器励磁涌流[J]. 继电器, 2004, 32(2): 1-5. Zhao Xiaotan, Chai Jianyun, Su Pengsheng, et al.Identification of magnetizing inrush current of power transformer based on features of flux locus[J]. Relay, 2004, 32(2): 1-5. [29] Etumi A A, Anayi F.The application of correlation technique in detecting internal and external faults in three-phase transformer and saturation of current transformer[J]. IEEE Transactions on Power Delivery, 2016, 31(5): 2131-2139.