Abstract:Aimed at the problem of increasing peak load caused by random charging of large scale electric vehicle, a multi-objective optimization scheduling method for active distribution network with large scale electric vehicle access is proposed. firstly, the charging demand of large scale electric vehicle is analyzed based on Monte Carlo sampling method, then, take the minimum operation cost and the minimum load curve variance of active distribution network as optimization objectives, considering the charging demand of electric vehicle and the operation constraints of distribution network, a multi-objective optimization scheduling model for active distribution network with large-scale electric vehicles assess is proposed, NSGA-II optimization algorithm is applied to solve the multi-objective model. For the Pareto optimal solution set is large and contains abundant information, it is difficult for the operators to make decision, a method based on fuzzy clustering is proposed to select the optimal solution from Pareto optimal solution set. The simulation test is carried out on the modified IEEE 34-node distribution system, the results shows that the method proposed in this paper can not only ensure the economic operation of the system, but also can reduce the load peak and valley difference of the system by using the optimized charging of electric vehicle.
肖浩, 裴玮, 孔力. 含大规模电动汽车接入的主动配电网多目标优化调度方法[J]. 电工技术学报, 2017, 32(增刊2): 179-189.
Xiao Hao, Pei Wei, Kong Li. Multi-Objective Optimization Scheduling Method for Active Distribution Network with Large Scale Electric Vehicles. Transactions of China Electrotechnical Society, 2017, 32(增刊2): 179-189.
[1] Green R C, Wang L, Alam M. The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 544-553. [2] Putrus G A, Suwanapingkarl P, Johnston D, et al. Impact of electric vehicles on power distribution networks[C]//IEEE Vehicle Power and Propulsion Conference, Dearbom, USA, 2009: 827-831. [3] 胡泽春, 宋永华, 徐智威, 等. 电动汽车接入电网的影响与利用[J]. 中国电机工程学报, 2012, 32(4): 1-10. Hu Zechun, Song Yonghua, Xu Zhiwei, et al. Impacts and utilization of electric vehicles integration into power systems[J]. Proceedings of the CSEE, 2012, 32(4): 1-10. [4] Raghavan S S, Khaligh A. Electrification potential factor: Energy-based value proposition analysis of plug-in hybrid electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2012, 61(3): 1052-1059. [5] 徐智威, 胡泽春, 宋永华, 等. 基于动态分时电价的电动汽车充电站有序充电策略[J]. 中国电机工程学报, 2014, 34(22): 3638-3646. Xu Zhiwei, Hu Zechun, Song Yonghua, et al. Coor- dinated charging strategy for PEV charging stations based on dynamic time-of-use tariffs[J]. Proceedings of the CSEE, 2014, 34(22): 3638-3646. [6] Han S, Han S, Sezaki K. Development of an optimal vehicle-to-grid aggregator for frequency regulation[J]. IEEE Transactions on Smart Grid, 2010, 1(1): 65-72. [7] Clement-Nyns K, Haesen E, Driesen J. The impact of charging plug-in hybrid electric vehicles on a resi- dential distribution grid[J]. IEEE Transactions on Power Systems, 2010, 25(1): 371-380. [8] 葛少云, 黄镠, 刘洪. 电动汽车有序充电的峰谷电价时段优化[J]. 电力系统保护与控制, 2012, 40(10): 1-5. Ge Shaoyun, Huang Liu, Liu Hong. Optimization of peak-valley TOU power price time-period in ordered charging mode of electric vehicle[J]. Power System Protection and Control, 2012, 40(10): 1-5. [9] 田文奇, 和敬涵, 姜久春, 等. 电动汽车换电站有序充电调度策略研究[J]. 电力系统保护与控制, 2012, 40(21): 114-119. Tian Wenqi, He Jinghan, Jiang Jiuchun, et al. Res- earch on dispatching strategy for coordinated char- ging of electric vehicle battery swapping station[J]. Power System Protection and Control, 2012, 40(21): 114-119. [10] 李秋硕, 肖湘宁, 郭静, 等. 电动汽车有序充电方法研究[J]. 电网技术, 2012, 36(12): 32-38. Li Qiushuo, Xiao Xiangning, Guo Jing, et al. Research on scheme for ordered charging of electric vehicles[J]. Power System Technology, 2012, 36(12): 32-38. [11] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20): 22-29. Zhao Junhua, Wen Fushuan, Xue Yusheng, et al. Power system stochastic economic dispatch consi- dering uncertain outputs from plug-in electric vehi- cles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20): 22-29. [12] 于大洋, 宋曙光, 张波, 等. 区域电网电动汽车充电与风电协同调度的分析[J]. 电力系统自动化, 2011, 35(14): 24-29. Yu Dayang, Song Shuguang, Zhang Bo, et al. Synergistic dispatch of PEVs charging and wind power in Chinese regional power grids[J]. Automa- tion of Electric Power Systems, 2011, 35(14): 24-29. [13] Freire R, Delgado J, Santos J M, et al. Integration of renewable energy generation with EV charging strategies to optimize grid load balancing[C]//13th International IEEE Conference on Intelligent Trans- portation Systems (ITSC), Funchal, Portugal, 2010: 392-396. [14] 杨冰, 王丽芳, 廖承林. 大规模电动汽车充电需求及影响因素[J]. 电工技术学报, 2013, 28(2): 22-27. Yang Bing, Wang Lifang, Liao Chenglin. Research on power charging demand of large-scale electric vehicles and its impacting factors[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 22-27. [15] 陈丽丹, 聂涌泉, 钟庆. 基于出行链的电动汽车充电负荷预测模型[J]. 电工技术学报, 2015, 30(4): 216-225. Chen Lidan, Nie Yongquan, Zhong Qing. A model for electric vehicle charging load forecasting based on trip chains[J]. Transactions of China Electrote- chnical Society, 2015, 30(4): 216-225. [16] Santos A, McGuckin N, Nakamoto H Y, et al. Summary of travel trends: 2009 national household travel survey[R]. 2011. [17] Wirasingha S G, Schofield N, Emadi A. Plug-in hybrid electric vehicle developments in the US: trends, barriers, and economic feasibility[C]//IEEE Vehicle Power and Propulsion Conference, Harbin, China, 2008: 1-8. [18] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126- 130. Tian Liting, Shi Shuanglong, Jia Zhuo. A statistical model for charging power demand of electric vehicles [J]. Power System Technology, 2010, 34(11): 126-130. [19] 张明霞, 田立亭. 一种基于需求分析的电动汽车有序充电实施架构[J]. 电力系统保护与控制, 2013, 41(3):118-122. Zhang Mingxia, Tian Liting. A method to organize the charging of electric vehicle based on demand analysis[J]. Power System Protection and Control, 2013, 41(3): 118-122. [20] Robert C, Casella G. Monte Carlo statistical methods [M]. New York: Springer Science & Business Media, 2013. [21] 陈卫, 杨波, 张兆云, 等. 计及电动汽车充电站接入的配电网承载能力评估与优化[J]. 电工技术学报, 2014, 29(8): 27-35. Chen Wei, Yang Bo, Zhang Zhaoyun, et al. Distri- bution networks supportability evaluation and optimi- zation considering electric vehicles charging stations [J]. Transactions of China Electrotechnical Society, 2014, 29(8):27-35. [22] Montenegro D, Hernandez M, Ramos G A. Real time OpenDSS framework for distribution systems simu- lation and analysis[C]//Transmission and Distri- bution: Latin America Conference and Exposition, Montevideo, Uruguay, 2012:1-5. [23] Jeyadevi S, Baskar S, Babulal C K, et al. Solving multiobjective optimal reactive power dispatch using modified NSGA-II[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(2): 219-228. [24] 陈征, 肖湘宁, 路欣怡, 等. 含光伏发电系统的电动汽车充电站多目标容量优化配置方法[J]. 电工技术学报, 2013, 28(6): 238-248. Chen Zheng, Xiao Xiangning, Lu Xinyi, et al. Multi- objective optimization for capacity configuration of PV-based electric vehicle charging stations[J]. Trans- actions of China Electrotechnical Society, 2013, 28(6): 238-248. [25] Agrawal S, Panigrahi B K, Tiwari M K. Multio- bjective particle swarm algorithm with fuzzy clus- tering for electrical power dispatch[J]. IEEE Trans- actions on Evolutionary Computation, 2008, 12(5): 529-541. [26] Kersting W H. Radial distribution test feeders[C]// IEEE Power Engineering Society Winter Meeting, Columbus, Ohio, USA, 2001: 908-912. [27] 肖浩, 裴玮, 孔力. 基于模型预测控制的微电网多时间尺度协调优化调度[J]. 电力系统自动化, 2016, 40(18): 7-14. Xiao Hao, Pei Wei, Kong Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40(18): 7-14. [28] Chen C, Duan S, Cai T, et al. Smart energy mana- gement system for optimal microgrid economic operation[J]. IET Renewable Power Generation, 2011, 5(3): 258-267.