电工技术学报  2022, Vol. 37 Issue (15): 3753-3766    DOI: 10.19595/j.cnki.1000-6753.tces.210860
电工理论与新技术 |
基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测
黄凯1, 丁恒1, 郭永芳2, 田海建1
1.省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学) 天津 300130;
2.河北工业大学人工智能与数据科学学院 天津 300130
Prediction of Remaining Useful Life of Lithium-Ion Battery Based on Adaptive Data Preprocessing and Long Short-Term Memory Network
Huang Kai1, Ding Heng1, Guo Yongfang2, Tian Haijian1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China;
2. School of Artificial Intelligence Hebei University of Technology Tianjin 300130 China
全文: PDF (2092 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 锂离子电池剩余使用寿命(RUL)可以评估电池的可靠性,是电池健康管理的重要参数。准确地预测电池的RUL可以有效提高设备的安全性并降低工作风险。该文提出一种自适应数据预处理结合长短期记忆神经网络(LSTM)的RUL预测框架。选取容量作为健康因子,数据预处理阶段,首先使用自适应双指数模型平滑方法减少容量回升现象产生的负面影响,然后通过自适应白噪声完整集成经验模态分解(CEEMDAN)对数据进行降噪;模型构建阶段,利用预处理后的数据训练得到用于RUL预测的LSTM模型。以NASA和CALCE公开数据集为研究对象进行算法性能测试,实验结果表明,所提方法鲁棒性好,能够提供精确的RUL预测结果。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄凯
丁恒
郭永芳
田海建
关键词 锂电池剩余使用寿命自适应双指数模型平滑方法自适应白噪声完整集成经验模态分解长短期记忆神经网络    
Abstract:The remaining useful life (RUL) of lithium-ion battery can evaluate the reliability of battery, which is an important parameter of battery health management. Accurate prediction of RUL of battery can effectively improve the safety of equipment and reduce the working risk. In this paper, a RUL prediction framework combined with the adaptive data preprocessing method and long-term and short-term memory neural network (LSTM) was proposed. Selecting capacity as the health factor, in the data preprocessing stage, the adaptive double exponential model smoothing method was used to reduce the negative effect of capacity recovery and the adaptive white noise integrated empirical mode decomposition (CEEMDAN) is used to suppress the noise. In the model constructing stage, the LSTM model was built for RUL prediction by training the preprocessed data. The NASA and CALCE open source data were selected to verify the performance of the proposed method. The experimental results show that it has good robustness and can provide RUL prediction results with high precision.
Key wordsLithium-ion battery    remaining useful life    adaptive bi-exponential model smooth method    the complete ensemble empirical mode decomposition with adaptive noise    long short-term memory network   
收稿日期: 2021-06-14     
PACS: TM912  
基金资助:河北省自然科学基金资助项目(E2019202328)
通讯作者: 郭永芳 女,1979年生,博士,副教授,硕士生导师,研究方向为智能算法、锂离子电池建模与寿命估计。E-mail:guoyongfang@hebut.edu.cn   
作者简介: 黄凯 男,1980年生,博士,副教授,硕士生导师,研究方向为储能与动力电池组测试与建模、电池组性能状态预测与可靠性估计。E-mail:huangkai@hebut.edu.cn
引用本文:   
黄凯, 丁恒, 郭永芳, 田海建. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. Huang Kai, Ding Heng, Guo Yongfang, Tian Haijian. Prediction of Remaining Useful Life of Lithium-Ion Battery Based on Adaptive Data Preprocessing and Long Short-Term Memory Network. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.210860          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I15/3753