A Flexible Power Distribution Strategy with Wind Turbine Generator and Energy Storage for Frequency Regulation in Isolated Microgrid
Zhang Jing1, Zhang Zhiwen1, Hu Sijia1, Li Yong1,2, Lin Jinjie1,2
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. Hunan Engineering Research Center of Large-Scale Battery Energy Storage Application Technology Changsha 410000 China
Abstract:Aiming at the issue of frequency fluctuations and low utilization of new energy in isolated microgrid operation, a flexible power distribution strategy with wind turbine generator (WTG) and energy storage (ES) equipment for frequency regulation is proposed in this paper. Firstly, the operating characteristics and corresponding control modes of various distributed generations in isolated microgrid are analyzed. Secondly, the state space model of isolated microgrid with WTG and ES participating in frequency regulation is established. Then, the optimized objective function in the rolling time domain is constructed with the goal of minimizing frequency deviation and maximizing energy utilization rate. And according to the frequency variation, the weight coefficients of the WTG and ES output power item in the objective function are adjusted in real time. Furthermore, the proposed strategy can flexibly adjust the boundary of the constraint conditions at each time section according to the time-varying characteristics of the wind speed and the state of charge (SOC) of ES, which can improve their safe operation level. Finally, the isolated microgrid model is built in MATLAB/Simulink platform, and the proposed control strategy is verified under different working cases. Simulation results show that, under the premise of satisfying the safety operation, the proposed strategy can realize isolated microgrid frequency control while optimizing the active power output of WTG and ES, reducing the wind power curtailment ratio, and achieving the goal of efficient utilization of energy. One more feature of the proposed strategy is the low dependence on the model parameter, which is conducive to robustness.
张靖, 张志文, 胡斯佳, 李勇, 林锦杰. 独立微电网风储协同调频的功率柔性分配策略[J]. 电工技术学报, 2022, 37(15): 3767-3780.
Zhang Jing, Zhang Zhiwen, Hu Sijia, Li Yong, Lin Jinjie. A Flexible Power Distribution Strategy with Wind Turbine Generator and Energy Storage for Frequency Regulation in Isolated Microgrid. Transactions of China Electrotechnical Society, 2022, 37(15): 3767-3780.
[1] 郭立东, 雷鸣宇, 杨子龙, 等. 光储微电网系统多目标协调控制策略[J]. 电工技术学报, 2021, 36(19): 4121-4131. Guo Lidong, Lei Mingyu, Yang Zilong, et al.Multi-objective coordinated control strategy for photovoltaic and energy-storage microgrid system[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4121-4131. [2] 李培强, 段克会, 董彦婷, 等. 含分布式混合储能系统的光伏直流微能量管理策略[J]. 电力系统保护与控制, 2017, 45(13): 42-48. Li Peiqiang, Duan Kehui, Dong Yanting, et al.Energy management strategy for photovoltaic DC microgrid with distributed hybrid energy storage system[J]. Power System Protection and Control, 2017, 45(13): 42-48. [3] 汪宝, 匡洪海, 郑丽平, 等. 分布式发电与配电网的协调发展与技术展望[J]. 电气技术, 2017, 18(3):5-9. Wang Bao, Kuang Honghai, Zheng Liping, et al.Prospect over the techniques and coordinated development of distributed generation and distribution network[J]. Electrical Engineering, 2017, 18(3): 5-9. [4] 吴学智, 刘海晨, 唐芬, 等. 孤岛下基于负序虚拟导纳的微电网不平衡控制策略[J]. 电工技术学报, 2019, 34(15): 3222-3230. Wu Xuezhi, Liu Haichen, Tang Fen, et al.Negative sequence virtual admittance based unbalance control strategy in islanded mode microgrid[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3222-3230. [5] 蔡瑶, 卢志刚, 孙可, 等. 计及源荷不确定性的独立型交直流混合微电网多能源协调优化调度[J]. 电工技术学报, 2021, 36(19): 4107-4120. Cai Yao, Lu Zhigang, Sun Ke, et al.Multi-energy coordinated optimal scheduling of isolated AC/DC hybrid microgrids considering generation and load uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4107-4120. [6] 万千, 夏成军, 管霖, 等. 含高渗透率分布式电源的独立微电网的稳定性研究综述[J]. 电网技术, 2019, 43(2): 598-612. Wan Qian, Xia Chengjun, Guan Lin, et al.Review on stability of isolated microgrid with highly penetrated distributed generations[J]. Power System Technology, 2019, 43(2): 598-612. [7] He Li, Li Yong, Shao Xia, et al.A two-layer dynamic voltage regulation strategy for dc distribution networks with distributed energy storages[J]. International Journal of Electrical Power and Energy Systems, 2020, 120(1): 1-13. [8] 颜湘武, 崔森, 常文斐. 考虑储能自适应调节的双馈感应发电机一次调频控制策略[J]. 电工技术学报, 2021, 36(5): 1027-1039. Yan Xiangwu, Cui Sen, Chang Wenfei.Primary frequency regulation control strategy of doubly-fed induction generator considering supercapacitor soc feedback adaptive adjustment[J]. Transactions of China Electrotechnical Society, 2021, 36(5): 1027-1039. [9] 石荣亮, 张兴, 刘芳, 等. 虚拟同步发电机及其在多能互补微电网中的运行控制策略[J]. 电工技术学报, 2016, 20(31): 170-180. Shi Rongliang, Zhang Xing, Liu Fang, et al.Control technologies of multi-energy complementary microgrid operation based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 20(31): 170-180. [10] 石荣亮, 张烈平, 王文成, 等. 基于改进频率微分运算的虚拟惯量控制策略[J]. 电力系统自动化, 2020, 44(20): 94-102. Shi Rongliang, Zhang Lieping, Wang Wencheng.Virtual inertia control strategy based on improved frequency differential operation[J]. Automation of Electric Power Systems, 2020, 44(20): 94-102. [11] 郭蕾, 苏建徽, 施永. 微电网孤岛运行模式下的调频控制策略[J]. 电力系统自动化, 2017, 41(8): 110-115. Guo Lei, Su Jianhui, Shi Yong.Frequency regulation control strategy for microgrid in islanded model[J]. Automation of Electric Power Systems, 2017, 41(8): 110-115. [12] 李斌, 周林, 余希瑞, 等. 基于改进虚拟同步发电机算法的微电网逆变器二次调频方案[J]. 电网技术, 2017, 41(8): 2680-2687. Li Bin, Zhou Lin, Yu Xirui, et al.Secondary frequency regulation for microgrid inverters based on improving virtual synchronous generator[J]. Power Systems Technology, 2017, 41(8): 2680-2687. [13] 颜湘武, 王星海, 王月茹. 微电网的新型无差调频控制方法研究[J]. 电力系统保护与控制, 2017, 45(21): 1-6. Yan Xiangwu, Wang Xinghai, Wang Yueru.Research on novel zero-error frequency regulation control method for microgrid[J]. Power System Protection and Control, 2017, 45(21): 1-6. [14] Zhang Qian, Li Yan, Ding Zhuwei, et al.Self-adaptive secondary frequency regulation strategy of micro-grid with multiple virtual synchronous generators[J]. IEEE Transactions on Industry Application, 2020, 56(5): 6007-6018. [15] 赵嘉兴, 高伟, 上官明霞, 等. 风电参与电力系统调频综述[J]. 电力系统保护与控制, 2017, 45(21): 157-169. Zhao Jiaxing, Gao Wei, Shangguan Mingxia, et al.Review on frequency regulation technology of power grid by wind farm[J]. Power System Protection and Control, 2017, 45(21): 157-169. [16] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2): 337-345. Shi Jingrong, Li Yong, He Li, et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 337-345. [17] 李军徽, 高卓, 李翠萍, 等. 基于动态任务系数的储能辅助风电一次调频控制策略[J]. 电力系统自动化, 2021, 45(19): 52-59. Li Junhui, Gao Zhuo, Li Cuiping, et al.Control strategy for dynamic task coefficient based primary frequency regulation of wind power assisted by energy storage[J]. Automation of Electric Power Systems, 2021, 45(19): 52-59. [18] 颜湘武, 宋子君, 崔森, 等. 基于变功率点跟踪和超级电容器储能协调控制的双馈风电机组一次调频策略[J]. 电工技术学报, 2020, 35(3): 530-541. Yan Xiangwu, Song Zijun, Cui Sen, et al.Primary frequency regulation strategy of doubly-fed wind turbine based on variable power point tracking and supercapacitor energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(3): 530-541. [19] Han Honggui, Qiao Junfei.Nonlinear Model-predictive control for industrial processes: an application to wastewater treatment process[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1970-1982. [20] 乐健, 廖小兵, 章琰天, 等. 电力系统分布式模型预测控制方法综述与展望[J]. 中国电机工程学报, 2020, 44(23): 179-191. Le Jian, Liao Xiaobing, Zhang Yantian, et al.Review and prospect on distributed model predictive control method for power system[J]. Proceedings of the CSEE, 2020, 44(23): 179-191. [21] 虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略[J]. 电力系统自动化, 2019, 43(12): 36-43. Yu Linbo, Kou Peng, Feng Yutao, et al.Model predictive control strategy for combined wind-storage system to participate in frequency response[J]. Automation of Electric Power Systems, 2019, 43(12): 36-43. [22] 王毅, 于明, 李永刚, 等. 基于模型预测控制方法的风电直流微电网集散控制[J]. 电工技术学报, 2016, 31(21): 57-66. Wang Yi, Yu Ming, Li Yonggang, et al.Model predictive controller-based distributed control of wind turbine dc microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(21): 57-66. [23] Babayomi O, Li Zhen, Zhang Zhenbin, et al.Distributed secondary frequency and voltage control of parallel-connected VSCs in microgrids: a predictive VSG-based solution[J]. CPSS Transactions on Power Electronics and Applications, 2020, 5(4): 342-351. [24] 李勇, 刘芳, 曹一家. 电力系统频率鲁棒控制[M]. 北京: 机械工业出版社, 2016. [25] Wang Haixin, Yang Junyu, Chen Zhe, et al.Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3077-3089. [26] Rogério G, Almeida D, Edgardo D C, et al.Optimum generation control in wind parks when carrying out system operator requests[J]. IEEE Transactions on Power System, 2006, 21(2): 718-725. [27] 石荣亮, 张兴, 刘芳, 等. 提高光储柴独立微电网频率稳定性的虚拟同步发电机控制策略[J]. 电力系统自动化, 2016, 40(22): 77-85. Shi Rongliang, Zhang Xing, Liu Fang, et al.Control strategy of virtual synchronous generator for improving frequency stability of islanded photovoltaic-battery-diesel microgrid[J]. Automation of Electric Power Systems, 2016, 40(22): 77-85. [28] 辜承林, 陈乔夫, 熊永前. 电机学[M]. 武汉: 华中科技大学出版社, 2005. [29] Nicolas S, James G, Behnaz P, et al.Virtual inertia emulator-based model predictive control for grid frequency regulation considering high penetration of inverter-based energy storage system[J]. IEEE Transactions on Sustainable Energy, 2020, 11(4): 2932-2939.