Abstract:When the recursive least square (RLS) method is applied to the multi-time scale system of lithium battery, problems such as low accuracy of model parameter identification and poor adaptability of working conditions will occur. For this reason, the dual polarization (DP) model is taken as the research object. Firstly, according to the different time-varying characteristics of the model parameters, the identification process of ohmic resistance is separated to reduce the number of parameters to be identified by RLS, and the mutual influence of the parameters is reduced, which improves the accuracy of RLS identification and reduces the amount of calculation. Secondly, considering the low accuracy of the model parameter online identification and the high accuracy of offline identification for constant current condition, an adaptive output equivalent circuit model for the full working condition is proposed to further improve the accuracy of the model. Simulations based on the actual operating conditions show that, the full-condition adaptive equivalent circuit model has higher accuracy than the R-DP online model with known ohmic resistance and the DP offline model, the better balance is achieved between model accuracy and running speed.
郭向伟, 邢程, 司阳, 朱军, 谢东垒. RLS锂电池全工况自适应等效电路模型[J]. 电工技术学报, 2022, 37(16): 4029-4037.
Guo Xiangwei, Xing Cheng, Si Yang, Zhu Jun, Xie Donglei. RLS Adaptive Equivalent Circuit Model of Lithium Battery under Full Working Condition. Transactions of China Electrotechnical Society, 2022, 37(16): 4029-4037.
[1] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotech- nical Society, 2021, 36(10): 2178-2189. [2] 刘芳, 马杰, 苏卫星, 等. 基于自适应回归扩展卡尔曼滤波的电动汽车动力电池全生命周期的荷电状态估算方法[J]. 电工技术学报, 2020, 35(4): 698-707. Liu Fang, Ma Jie, Su Weixing, et al.State of charge estimation method of electric vehicle power battery life cycle based on auto regression extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 698-707. [3] 刘伟, 杨耕, 孟德越, 等. 计及常用恒流工况的锂离子电池建模方法[J]. 电工技术学报, 2021, 36(24): 5186-5200. Liu Wei, Yang Geng, Meng Deyue, et al.Modeling method of lithium-ion battery considering commonly used constant current conditions[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5186-5200. [4] Berrueta A, Urtasun A, Ursúa A, et al.A com- prehensive model for lithium-ion batteries: from the physical principles to an electrical model[J]. Energy, 2018, 144: 286-300. [5] 潘海鸿, 张沫, 王惠民, 等. 基于多影响因素建立锂离子电池充电内阻的动态模型[J]. 电工技术学报, 2021, 36(10): 2199-2206. Pan Haihong, Zhang Mo, Wang Huimin, et al.Establishing a dynamic model of lithium-ion battery charging internal resistance based on multiple factors[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2199-2206. [6] 郭向伟. 电动汽车电池荷电状态估计及均衡技术研究[D]. 广州: 华南理工大学, 2016. [7] Tian Huixin, Qin Pengliang, Li Kun, et al.A review of the state of health for lithium-ion batteries: research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. [8] 卫志农, 原康康, 成乐祥, 等. 基于多新息最小二乘算法的锂电池参数辨识[J]. 电力系统自动化, 2019, 43(15): 139-145. Wei Zhinong, Yuan Kangkang, Cheng Lexiang, et al.Parameter identification of lithium-ion battery based on multi-innovation least squares algorithm[J]. Auto- mation of Electric Power Systems, 2019, 43(15): 139-145. [9] 熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018. [10] Jarraya I, Masmoudi F, Chabchoub M H, et al.An online state of charge estimation for lithium-ion and supercapacitor in hybrid electric drive vehicle[J]. Journal of Energy Storage, 2019, 26: 100946. [11] Sun Li, Li Guanru, You Fengqi.Combined internal resistance and state-of-charge estimation of lithium- ion battery based on extended state observer[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 109994. [12] Yan Chong, Yao Yuxing, Cai Wenlong, et al.The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries[J]. Journal of Energy Chemistry, 2020, 49: 335-338. [13] Qaisar S M.Event-driven approach for an efficient coulomb counting based Li-ion battery state of charge estimation[J]. Procedia Computer Science, 2020, 168: 202-209. [14] 宋轩宇, 黄敬尧, 段俊强. 基于自适应递推最小二乘法与无迹卡尔曼滤波的电池SOC估算[J]. 电力科学与工程, 2019, 35(12): 41-48. Song Xuanyu, Huang Jingyao, Duan Junqiang.Estimation of state of charge of battery based on adaptive recursive least squares and unscented Kalman filtering[J]. Electric Power Science and Engineering, 2019, 35(12): 41-48. [15] 李华. 动力锂电池建模与SOC估计策略研究[D]. 太原: 太原科技大学, 2018. [16] Ji Yingping, Chen Xiaoping, Wang Tao, et al.Coupled effects of charge-discharge cycles and rates on the mechanical behavior of electrodes in lithium- ion batteries[J]. Journal of Energy Storage, 2020, 30: 101577. [17] 张振宇, 汪光森, 聂世雄, 等. 脉冲大倍率放电条件下磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2019, 34(8): 1769-1779. Zhang Zhenyu, Wang Guangsen, Nie Shixiong, et al.State of charge estimation of LiFePO4 battery under the condition of high rate pulsed discharge[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1769-1779. [18] Lu Yao, Tang Yinggan, Zhang Xuguang, et al.Parameter identification of fractional order systems with nonzero initial conditions based on block pulse functions[J]. Measurement, 2020, 158: 107684. [19] 朱瑞, 段彬, 温法政, 等. 基于分布式最小二乘法的锂离子电池建模及参数辨识[J]. 机械工程学报, 2019, 55(20): 85-93. Zhu Rui, Duan Bin, Wen Fazheng, et al.Lithium-ion battery modeling and parameter identification based on decentralized least squares method[J]. Journal of Mechanical Engineering, 2019, 55(20): 85-93. [20] 刘安迪, 李妍, 谢伟, 等. 基于多源数据多时间断面的配电网线路参数估计方法[J]. 电力系统自动化, 2021, 45(2): 46-54. Liu Andi, Li Yan, Xie Wei, et al.Estimation method of line parameters in distribution network based on multi-source data and multi-time sections[J]. Auto- mation of Electric Power Systems, 2021, 45(2): 46-54. [21] 董喜乐. 锂离子电池模型参数和荷电状态联合在线估计方法研究[D]. 北京: 北京交通大学, 2019. [22] Ding Feng, Chen Tongwen.Performance bounds of forgetting factor least-squares algorithms for time- varying systems with finite measurement data[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(3): 555-566.