电工技术学报  2022, Vol. 37 Issue (22): 5872-5882    DOI: 10.19595/j.cnki.1000-6753.tces.211585
电能存储与应用 |
基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计
刘素贞1,2, 袁路航1,2, 张闯1,2, 金亮1,2, 杨庆新1
1.省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)天津 300130;
2.河北工业大学河北省电磁场与电器可靠性重点实验室 天津 300130
State of Charge Estimation of LiFeO4 Batteries Based on Time Domain Features of Ultrasonic Waves and Random Forest
Liu Suzhen1,2, Yuan Luhang1,2, Zhang Chuang1,2, Jin Liang1,2, Yang Qingxin1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China;
2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
全文: PDF (8034 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 荷电状态(SOC)是电池管理系统中的重要监测指标。磷酸铁锂电池因开路电压与SOC曲线过于平坦而导致电信号对SOC变化不敏感,从而难以实现精确估计。超声信号可以检测电极材料物理性质变化,继而建立构效关系来表征电池状态。该文融合高相关性超声特征和低复杂性回归模型提出了一种磷酸铁锂电池平台期SOC估计方法。首先,分析超声波发射频率、电流倍率和温度等不同条件下常规超声特征与SOC的一致性和相关性变化;然后,基于超声结构特征进一步扩展多维高相关性超声时域特征;最后,对比多种数据驱动和模型驱动方法后提出一种基于随机森林的SOC精确估计方法。实验结果显示,不同动态工况下SOC估计的方均根误差和平均绝对误差分别低于1.9%和1.6%,验证了此方法进行SOC估计的可靠性与准确性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘素贞
袁路航
张闯
金亮
杨庆新
关键词 磷酸铁锂电池荷电状态超声时域特征随机森林    
Abstract:State of charge (SOC) is an important monitoring parameter in the battery management system. Due to the flat open circuit voltage and SOC curve, SOC of LiFeO4 (LFP) batteries is not sensitive to changes in electrical signals. Therefore, it is difficult to accurately estimate the SOC of LFP batteries. Ultrasonic wave signals can detect changes in the physical properties of electrode materials, and establish a structure-activity relationship to characterize the battery state. In this paper, a SOC estimation method of LFP batteries is proposed based on high-correlation ultrasound features and a low-complexity regression model. Firstly, the consistency and correlation between commonly used ultrasonic features and SOC are analyzed under different conditions such as ultrasonic transmission frequency, current rate, and temperature. Secondly, the time domain ultrasound features of high- correlation are further extended based on the structural features of ultrasound envelope line. After the comparison of data-driven and model-driven methods, an accurate estimation method of SOC is proposed based on random forest model. The experimental results show that the root mean square error and mean absolute error of SOC estimation under different dynamic conditions are lower than 1.9% and 1.6%, respectively, which verifies the reliability and accuracy of this method.
Key wordsLithium iron phosphate battery    state of charge    time domain features of ultrasonic waves    random forest   
收稿日期: 2021-10-08     
PACS: TM911  
基金资助:国家自然科学基金项目(51777052, 51977058)、河北省中央引导地方科技项目(216Z4406G)和电力系统国家重点实验室资助课题(SKLD21KZ04)资助
通讯作者: 刘素贞 女,1969年生,博士,教授,博士生导师,研究方向为工程电磁场与磁技术。E-mail: szliu@hebut.edu.cn   
作者简介: 袁路航 男,1996年生,博士研究生,研究方向为锂离子电池超声检测原位表征技术及相关理论。E-mail: yuanluhang2021@163.com
引用本文:   
刘素贞, 袁路航, 张闯, 金亮, 杨庆新. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5882. Liu Suzhen, Yuan Luhang, Zhang Chuang, Jin Liang, Yang Qingxin. State of Charge Estimation of LiFeO4 Batteries Based on Time Domain Features of Ultrasonic Waves and Random Forest. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5882.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.211585          https://dgjsxb.ces-transaction.com/CN/Y2022/V37/I22/5872