State of Charge Estimation of LiFeO4 Batteries Based on Time Domain Features of Ultrasonic Waves and Random Forest
Liu Suzhen1,2, Yuan Luhang1,2, Zhang Chuang1,2, Jin Liang1,2, Yang Qingxin1
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China
Abstract:State of charge (SOC) is an important monitoring parameter in the battery management system. Due to the flat open circuit voltage and SOC curve, SOC of LiFeO4 (LFP) batteries is not sensitive to changes in electrical signals. Therefore, it is difficult to accurately estimate the SOC of LFP batteries. Ultrasonic wave signals can detect changes in the physical properties of electrode materials, and establish a structure-activity relationship to characterize the battery state. In this paper, a SOC estimation method of LFP batteries is proposed based on high-correlation ultrasound features and a low-complexity regression model. Firstly, the consistency and correlation between commonly used ultrasonic features and SOC are analyzed under different conditions such as ultrasonic transmission frequency, current rate, and temperature. Secondly, the time domain ultrasound features of high- correlation are further extended based on the structural features of ultrasound envelope line. After the comparison of data-driven and model-driven methods, an accurate estimation method of SOC is proposed based on random forest model. The experimental results show that the root mean square error and mean absolute error of SOC estimation under different dynamic conditions are lower than 1.9% and 1.6%, respectively, which verifies the reliability and accuracy of this method.
刘素贞, 袁路航, 张闯, 金亮, 杨庆新. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5882.
Liu Suzhen, Yuan Luhang, Zhang Chuang, Jin Liang, Yang Qingxin. State of Charge Estimation of LiFeO4 Batteries Based on Time Domain Features of Ultrasonic Waves and Random Forest. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5882.
[1] Tian Jinpeng, Xiong Rui, Shen Weixiang, et al.State- of-charge estimation of LiFePO4 batteries in electric vehicles: a deep-learning enabled approach[J]. Applied Energy, 2021, 291(3): 116812. [2] 巫春玲, 胡雯博, 孟锦豪, 等. 基于最大相关熵扩展卡尔曼滤波算法的锂离子电池荷电状态估计[J]. 电工技术学报, 2021, 36(24): 5165-5175. Wu Chunling, Hu Wenbo, Meng Jinhao, et al.State of charge estimation of lithium-ion batteries based on maximum correlation-entropy criterion extended Kalman filtering algorithm[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5165-5175. [3] Aifantis K E, Hackney S A, Kumar R V, 编著. 高能量密度锂离子电池: 材料、工程及应用[M]. 赵铭姝, 宋晓平, 郑青阳, 译. 北京: 机械工业出版社, 2012. [4] Xiong Rui, Wang Ju, Shen Weixiang, et al.Co- estimation of state of charge and capacity for lithium-ion batteries with multi-stage model fusion method[J]. Engineering, 2021, 7(10): 1469-1482. [5] Chen Xiaopeng, Shen Weixiang, Dai Mingxiang, et al.Robust adaptive sliding-mode observer using RBF neural network for lithium-ion battery state of charge estimation in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2015, 65(4): 1936-1947. [6] Chemali E, Kollmeyer P J, Preindl M, et al.Long short-term memory networks for accurate state- of-charge estimation of Li-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6730-6739. [7] 庞辉, 郭龙, 武龙星, 等. 考虑环境温度影响的锂离子电池改进双极化模型及其荷电状态估算[J]. 电工技术学报, 2021, 36(10): 2178-2189. Pang Hui, Guo Long, Wu Longxing, et al.An improved dual polarization model of Li-ion battery and its state of charge estimation considering ambient temperature[J]. Transactions of China Electrotech- nical Society, 2021, 36(10): 2178-2189. [8] Polóni T, Figueroa-Santos M A, Siegel J B, et al. Integration of non-monotonic cell swelling characte- ristic for state-of-charge estimation[C]//Annual American Control Conference (ACC), Milwaukee, WI, USA, 2018: 2306-2311. [9] Popp H, Koller M, Jahn M, et al.Mechanical methods for state determination of lithium-ion secondary batteries: a review[J]. Journal of Energy Storage, 2020, 32(9): 101859. [10] 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. Deng Zhe, Huang Zhenyu, Liu Lei, et al.Applications of ultrasound technique in characterization of lithium- ion batteries[J]. Energy Storage Science and Tech- nology, 2019, 8(6): 1033-1039. [11] Majasan J O, Robinson J B, Owen R E, et al.Recent advances in acoustic diagnostics for electrochemical power systems[J]. Journal of Physics: Energy, 2021, 3(3): 032011. [12] 张闯, 孙博, 金亮, 等. 基于声波时域特征的锂离子电池荷电状态表征[J]. 电工技术学报, 2021, 36(22): 4666-4676. Zhang Chuang, Sun Bo, Jin Liang, et al.Characteri- zation of the state of charge of lithium-ion batteries based on the time-domain characteristics of acoustic waves[J]. Transactions of China Electrotechnical Society, 2021, 36(22): 4666-4676. [13] 朱小平, 张涛. 基于自适应理论的锂离子电池SOC估计[J]. 电气技术, 2013, 14(7): 47-50. Zhu Xiaoping, Zhang Tao.New method of SOC estimation for lithium-ion batteries based on self- adaptive system[J]. Electrical Engineering, 2013, 14(7): 47-50. [14] He Hongwen, Zhang Xiaowei, Xiong Rui, et al.Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318. [15] 吴健, 尹泽, 李豪, 等. 基于分数阶理论的锂离子电池高频等效电路模型[J]. 电工技术学报, 2021, 36(18): 3902-3910. Wu Jian, Yin Ze, Li Hao, et al.High-frequency equivalent circuit model of lithium-ion battery based on fractional order theory[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3902-3910. [16] Aizikovich S M, Erofeev V I, Leonteva A V.Plane longitudinal waves in a liquid saturated porous geometrically nonlinear medium[J]. Materials Physics and Mechanics, 2018, 35(1): 10-15. [17] Sood B, Osterman M, Pecht M.Health monitoring of lithium-ion batteries[C]//IEEE Symposium on Product Compliance Engineering, Austin, TX, USA, 2013: 1-6. [18] Gold L, Bach T, Virsik W, et al.Probing lithium-ion batteries' state-of-charge using ultrasonic transmission- concept and laboratory testing[J]. Journal of Power Sources, 2017, 343: 536-544. [19] Davies G, Knehr K W, Van Tassell B, et al.State of charge and state of health estimation using electro- chemical acoustic time of flight analysis[J]. Journal of the Electrochemical Society, 2017, 164(12): 2746-2755. [20] Ladpli P, Kopsaftopoulos F, Chang Fukuo.Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/ actuators[J]. Journal of Power Sources, 2018, 384: 342-354. [21] Ladpli P, Liu Chen, Kopsaftopoulos F, et al.Estimating lithium-ion battery state of charge and health with ultrasonic guided waves using an efficient matching pursuit technique[C]//IEEE Transportation Electrification Conference and Expo, Asia-Pacific, Bangkok, Thailand, 2018: 1-5. [22] Copley R J, Cumming D, Wu Y, et al.Measurements and modelling of the response of an ultrasonic pulse to a lithium-ion battery as a precursor for state of charge estimation[J]. Journal of Energy Storage, 2021, 36: 102406. [23] Hu Xiaosong, Feng Fei, Liu Kailong, et al.State estimation for advanced battery management: key challenges and future trends[J]. Renewable and Sustainable Energy Reviews, 2019, 114: 109334. [24] Robinson J B, Pham M, Kok M D R, et al. Examining the cycling behaviour of Li-ion batteries using ultrasonic time-of-flight measurements[J]. Journal of Power Sources, 2019, 444: 227318. [25] Qi Yue, Hector L G Jr, James C, et al. Lithium concentration dependent elastic properties of battery electrode materials from first principles calcu- lations[J]. Journal of the Electrochemical Society, 2014, 161(11): 3010-3018. [26] 刘素贞, 饶诺歆, 张闯, 等. 基于LabVIEW的电磁超声无损检测系统的设计[J]. 电工技术学报, 2018, 33(10): 2274-2281. Liu Suzhen, Rao Nuoxin, Zhang Chuang, et al.Design of electromagnetic ultrasonic nondestructive testing system based on LabVIEW[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2274-2281. [27] Mawonou K S R, Eddahech A, Dumur D, et al. State- of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking[J]. Journal of Power Sources, 2021, 484: 229154. [28] 马速良, 武建文, 袁洋, 等. 多振动信息下的高压断路器机械故障随机森林融合诊断方法[J]. 电工技术学报, 2020, 35(增刊2): 421-431. Ma Suliang, Wu Jianwen, Yuan Yang, et al.Mechanical fault fusion diagnosis of high voltage circuit breaker using multi-vibration information based on random forest[J]. Transactions of China Electrotechnical Society, 2020, 35(S2): 421-431. [29] 卢浩宜. 基于统计学方法对试验室结果一致性、有效性分析[J]. 汽车实用技术, 2019(4): 125-128. Lu Haoyi.Analysis of consistency and validity of laboratory test results based on statistical method[J]. Automobile Applied Technology, 2019(4): 125-128. [30] Edelmann D, Móri T F, Székely G J.On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960. [31] 周世杰, 李顶根. 基于超声测量及神经网络的锂离子动力电池SOC估算[J]. 汽车工程学报, 2021, 11(1): 19-24. Zhou Shijie, Li Dinggen.SOC estimation for lithium ion power batteries based on ultrasonic measurement and neural networks[J]. Chinese Journal of Auto- motive Engineering, 2021, 11(1): 19-24.