Abstract:The collaboration of storage units can better solve the randomness and volatility of distributed power generation in DC microgrids. However, the existing hierarchical control based on the DC bus voltage signal doesn’t fully consider the coordination of multiple storage units and the insufficient capacity of islanding systems. Therefore, a coordinated power control strategy for DC microgrid and storage expansion unit based on voltage hierarchical control is proposed. In order to realize the decentralized coordination of multiple storage units under the voltage hierarchical control, the load power boundary corresponding to different operation modes of the existing microgrid is revealed firstly. Then, the improved fuzzy control and droop control based on the SOC of multiple storage units are proposed to realize the adaptive allocation of charging and discharging power. For the insufficient capacity of islanding systems, a power control strategy based on the over/under voltage controller is proposed for storage expansion units according to the capacity calculation, and its influence on the power boundary of the existing system is analyzed, to ensure the safe and reliable operation of DC microgrids. Finally, simulation and experimental results verify the feasibility and effectiveness of the proposed control strategies.
郭慧, 汪飞, 顾永文, 李玉菲. 基于电压分层控制的直流微电网及其储能扩容单元功率协调控制策略[J]. 电工技术学报, 2022, 37(12): 3117-3131.
Guo Hui, Wang Fei, Gu Yongwen, Li Yufei. Coordinated Power Control Strategy for DC Microgrid and Storage Expansion Unit Based on Voltage Hierarchical Control. Transactions of China Electrotechnical Society, 2022, 37(12): 3117-3131.
[1] 刘彦呈, 庄绪州, 张勤进, 等. 基于虚拟频率的直流微电网下垂控制策略[J]. 电工技术学报, 2021, 36(8): 1693-1702. Liu Yancheng, Zhuang Xuzhou, Zhang Qinjin, et al.A virtual current-frequency droop control in DC microgrid[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1693-1702. [2] Kirakosyan A, El-Saadany E F, Moursi M S E, et al. Communication-free current sharing control strategy for DC microgrids and its application for AC/DC hybrid microgrids[J]. IEEE Transactions on Power Systems, 2020, 35(1): 140-151. [3] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178. Zhu Xiaorong, Li Zheng, Meng Fanqi.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178. [4] Khayat Y, Shafiee Q, Heydari R, et al.On the secondary control architectures of AC microgrids: an overview[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 6482-6500. [5] 赵竞涵, 于淼, 刘佳宁, 等. 基于分散式阻抗判据的多换流器接入交流微电网稳定性分析[J]. 中国电机工程学报, 2021, 41(10): 3575-3584. Zhao Jinghan, Yu Miao, Liu Jianing, et al.Decentra-lized impedance criteria for stability analysis of multi-converter AC microgrid[J]. Proceedings of the CSEE, 2021, 41(10): 3575-3584. [6] 朱珊珊, 汪飞, 郭慧, 等. 直流微电网下垂控制技术研究综述[J]. 中国电机工程学报, 2018, 38(1): 72-84, 344. Zhu Shanshan, Wang Fei, Guo Hui, et al.Overview of droop control in DC microgrid[J]. Proceedings of the CSEE, 2018, 38(1): 72-84, 344. [7] 李忠文, 程志平, 张书源, 等. 考虑经济调度及电压恢复的直流微电网分布式二次控制[J]. 电工技术学报, 2021, 36(21): 4482-4492. Li Zhongwen, Cheng Zhiping, Zhang Shuyuan, et al.Distributed secondary control for economic dispatch and voltage restoration of DC microgrid[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(21): 4482-4492. [8] Sanjeev P, Padhy N P, Agarwal P.Autonomous power control and management between standalone DC microgrids[J]. IEEE Transactions on Industrial Infor-matics, 2018, 14(7): 2941-2950. [9] 杨美辉, 周念成, 王强钢, 等. 基于分布式协同的双极直流微电网不平衡电压控制策略[J]. 电工技术学报, 2021, 36(3): 634-645. Yang Meihui, Zhou Niancheng, Wang Qianggang, et al.Unbalanced voltage control strategy of bipolar DC microgrid based on distributed cooperation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 634-645. [10] Dragičević T, Lu Xiaonan, Vasquez J C, et al.DC microgrids-part II: a review of power architectures, applications and standardization issues[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3528-3549. [11] Ma W J, Wang Jianhui, Lu Xiaonan, et al.Optimal operation mode selection for a DC microgrid[J]. IEEE Transactions on Smart Grid, 2016, 7(6): 2624-2632. [12] Alshareef M, Lin Zhengyu, Li Fulong, et al.A grid interface current control strategy for DC micro-grids[J]. CES Transactions on Electrical Machines and Systems, 2021, 5(3): 249-256. [13] 郭伟, 赵洪山. 基于事件触发机制的直流微电网多混合储能系统分层协调控制方法[J]. 电工技术学报, 2020, 35(5): 1140-1151. Guo Wei, Zhao Hongshan.Coordinated control method of multiple hybrid energy storage system in DC microgrid based on event-triggered mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1140-1151. [14] 张伟亮, 张辉, 支娜, 等. 环形直流微电网故障分析与保护[J]. 电力系统自动化, 2020, 44(24): 105-110. Zhang Weiliang, Zhang Hui, Zhi Na, et al.Fault analysis and protection of ring DC microgrid[J]. Automation of Electric Power Systems, 2020, 44(24): 105-110. [15] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgrid based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [16] 喻礼礼, 张兆云, 刘艺涛. 基于改进自适应下垂的直流微电网稳定分析与研究[J]. 电气技术, 2020, 21(5): 28-32. Yu Lili, Zhang Zhaoyun, Liu Yitao.Stability analysis and research of DC microgrid based on improved adaptive drooping[J]. Electrical Engineering, 2020, 21(5): 28-32. [17] 李武华, 顾云杰, 王宇翔, 等. 新能源直流微网的控制架构与层次划分[J]. 电力系统自动化, 2015, 39(9): 156-163. Li Wuhua, Gu Yunjie, Wang Yuxiang, et al.Control architecture and hierarchy division for renewable energy DC microgrids[J]. Automation of Electric Power Systems, 2015, 39(9): 156-163. [18] 吕振宇, 吴在军, 窦晓波, 等. 基于离散一致性的孤立直流微网自适应下垂控制[J]. 中国电机工程学报, 2015, 35(17): 4397-4407. Lü Zhenyu, Wu Zaijun, Dou Xiaobo, et al.An adaptive droop control for the islanded DC microgrid based on discrete consensus algorithm[J]. Proceedings of the CSEE, 2015, 35(17): 4397-4407. [19] Morstyn T, Savkin A V, Hredzak B, et al.Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 4735-4743. [20] 刘忠, 杨陈, 蒋玮, 等. 基于一致性算法的直流微电网储能系统功率分配技术[J]. 电力系统自动化, 2020, 44(7): 61-69. Liu Zhong, Yang Chen, Jiang Wei, et al.Consensus algorithm based power distribution technology for energy storage system in DC microgrid[J]. Auto-mation of Electric Power Systems, 2020, 44(7): 61-69. [21] Xiao Jianfang, Wang Peng, Setyawan L.Hierarchical control of hybrid energy storage system in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4915-4924. [22] Li Fulong, Lin Zhengyu, Qian Zhongnan, et al.A dual-window DC bus interacting method for DC microgrids hierarchical control scheme[J]. IEEE Transactions on Sustainable Energy, 2020, 11(2): 652-661. [23] Pang Shengzhao, Hashjin S A, Nahid-Mobarakeh B, et al.Large-signal stabilization of power converters cascaded input filter using adaptive energy shaping control[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2): 838-853. [24] 陆晓楠, 孙凯, 黄立培, 等. 直流微电网储能系统中带有母线电压跌落补偿功能的负荷功率动态分配方法[J]. 中国电机工程学报, 2013, 33(16): 37-46, 20. Lu Xiaonan, Sun Kai, Huang Lipei, et al.Dynamic load power sharing method with elimination of bus voltage deviation for energy storage systems in DC micro-grids[J]. Proceedings of the CSEE, 2013, 33(16): 37-46, 20.