Abstract:As an effective way to solve the low inertia problem of highly power electronic DC microgrids, virtual capacitance control needs to meet certain constraints in actual engineering applications to ensure the safe and reliable system operation. Accordingly, a virtual capacitance control method considering multiple constraintsis proposed, which synthetically considers some factors such as batteries’ state of charge, DC voltage change rate, instantaneous output power and output power per unit time of the converter. Firstly, the virtual capacitance calculation formula is improved by analyzing each constraint index. And the weights under different operating conditions are adjusted according to their importance. The obtained virtual capacitance is used to modify the inner loop current reference value in real time after formula conversion, which will change the battery power output, and improve long-term safe operation capability of the equipment as much as possible. Secondly, the small signal modeling analysis method is used to reveal the influence of main control parameters on the system stability, which provides a basis for selecting key parameter values. Finally, the effectiveness of proposed control method and correctness of stability analysis are verified by building the controller-level hardware-in-the-loop test platform.
张赟, 王毅, 孟建辉, 刘宝. 考虑多约束指标的直流微电网虚拟电容控制方法[J]. 电工技术学报, 2022, 37(zk1): 277-287.
Zhang Yun, Wang Yi, Meng Jianhui, Liu Bao. Virtual Capacitance Control Method of DC Microgrid Considering Multiple Constraints. Transactions of China Electrotechnical Society, 2022, 37(zk1): 277-287.
[1] Teimourzadeh S, Aminifar F, Davarpanah M, et al.Adaptive control of microgrid security[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3909-3910. [2] 刘子文, 苗世洪, 范志华, 等. 基于自适应下垂特性的孤立直流微电网功率精确分配与电压无偏差控制策略[J]. 电工技术学报, 2019, 34(4): 795-806. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Accurate power allocation and zero steady-state error voltage control of the islanding DC microgird based on adaptive droop characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 795-806. [3] Wang Yi, Wang Chen, Xu Lie, et al.Adjustable inertial response from the converter with adaptive droop control in DC grids[J]. IEEE Transactions on Smart Grid, 2019, 10(3): 3198-3209. [4] 刘勇, 雷延科, 盘宏斌. 一种直流微电网无母线电压偏移的均衡控制策略[J]. 电力系统保护与控制, 2020, 48(12): 154-161. Liu Yong, Lei Yanke, Pan Hongbin.A balancing control strategy for DC microgrid without bus voltage offset[J]. Power System Protection and Control, 2020, 48(12): 154-161. [5] 聂永刚, 李俊青, 韩爽, 等. 基于虚拟惯量的DC换流器并联直流配电网控制策略[J]. 电力系统保护与控制, 2020, 48(15): 19-26. Nie Yonggang, Li Junqing, Han Shuang, et al.Virtual inertia-based control strategy for a multi parallel DC converter in a DC distribution system[J]. Power System Protection and Control, 2020, 48(15): 19-26. [6] 兰征, 涂春鸣, 姜飞. 基于虚拟电机技术的直流微电网与主电网柔性互联策略[J]. 电工技术学报, 2019, 34(8): 1739-1749. Lan Zheng, Tu Chunming, Jiang Fei.The flexible interconnection strategy between DC microgrid and AC grid based on virtual electric machinery technology[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1739-1749. [7] 张继红, 王洪明, 魏毅立, 等. 含复合储能和燃气轮发电机的直流微电网母线电压波动分层控制策略[J]. 电工技术学报, 2018, 33(6): 1238-1246. Zhang Jihong, Wang Hongming, Wei Yili, et al.Hierarchical control strategy of voltage fluctuation in DC microgrid consisting gas-turbine generator and composite energy storage[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1238-1246. [8] 王毅, 黑阳, 付媛, 等. 基于变下垂系数的直流配电网自适应虚拟惯性控制[J]. 电力系统自动化, 2017, 41(8): 116-124. Wang Yi, Hei Yang, Fu Yuan, et al.Adaptive virtual inertia control of DC distribution network based on variable droop coefficient[J]. Automation of Electric Power Systems, 2017, 41(8): 116-124. [9] Wu Dan, Tang Fen, Dragicevic T, et al.Coordinated control based on bus-signaling and virtual inertia for islanded DC microgrids[J]. IEEE Transactions on Smart Grid, 2015, 6(6): 2627-2638. [10] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-371. Wu Wenhua, Chen Yandong, Luo An, et al.A virtual inertia control strategy for bidirectional grid-connected converters in DC micro-grids[J]. Proceedings of the CSEE, 2017, 37(2): 360-371. [11] Zhu Xiaorong, Xie Zhiyun, Jing Shuzhi, et al.Distributed virtual inertia control and stability analysis of DC microgrid[J]. IET Generation, Transmission & Distribution, 2018, 12(14): 3477-3486. [12] 朱晓荣, 孟凡奇. 含虚拟惯性控制的直流微电网稳定性分析[J]. 电网技术, 2020, 44(1): 220-230. Zhu Xiaorong, Meng Fanqi.Stability analysis of DC microgrid with virtual inertia control[J]. Power System Technology, 2020, 44(1): 220-230. [13] 孟建辉, 邹培根, 王毅, 等. 基于灵活虚拟惯性控制的直流微网小信号建模及参数分析[J]. 电工技术学报, 2019, 34(12): 2615-2626. Meng Jianhui, Zou Peigen, Wang Yi, et al.Small-signal modeling and parameter analysis of the DC microgrid based on flexible virtual inertia control[J]. Transactions of China Electrotechnical Society, 2019, 34(12): 2615-2626. [14] 段俐存, 赵巧娥, 高金城, 等. 直流配电网中变流器的虚拟惯量自适应控制[J]. 电力电子技术, 2019, 53(12): 52-54, 62. Duan Licun, Zhao Qiaoe, Gao Jincheng, et al.Virtual inertia adaptive control of grid-connected converter in direct current distribution network[J]. Power Electronics, 2019, 53(12): 52-54, 62. [15] 孟建辉, 宋美琪, 王毅, 等. 虚拟电容控制下并网型直流微网VSC多约束稳定运行边界[J]. 电力系统自动化, 2019, 43(15): 172-179, 199. Meng Jianhui, Song Meiqi, Wang Yi, et al.Multi-constraint stable operation boundary of grid-connected source converter of DC microgrid with. virtual capacitance control[J]. Automation of Electric Power Systems, 2019, 43(15): 172-179, 199. [16] Gee A M, Robinson F V P, Dunn R W. Analysis of battery lifetime extension in a small-scale wind-energy system using supercapacitors[J]. IEEE Transactions on Energy Conversion, 2013, 28(1): 24-33. [17] 张春雪, 黎灿兵, 冯伟, 等. 孤立运行光/储微电网中储能变流器暂态功率波动协调抑制策略[J]. 中国电机工程学报, 2018, 38(8): 2302-2314, 2540. Zhang Chunxue, Li Canbing, Feng Wei, et al.A coordinated transient power fluctuation suppression strategy for power conversion system in islanded PV/storage microgrid[J]. Proceedings of the CSEE, 2018, 38(8): 2302-2314, 2540. [18] Wu T F, Chang C H, Lin L C, et al.DC-bus voltage control with a three-phase bidirectional inverter for DC distribution systems[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1890-1899. [19] 李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略[J]. 电工技术学报, 2019, 34(18): 3897-3908. Li Xinran, Cui Xiwen, Huang Jiyuan, et al.The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation[J]. Transactions of China Electrotechnical Society, 2019, 34(18): 3897-3908. [20] 杨子龙, 宋振浩, 潘静, 等. 分布式光伏/储能系统多运行模式协调控制策略[J].中国电机工程学报2019, 39(8): 2213-2220, 4. Yang Zilong, Song Zhenhao, Pan Jing, et al.Multi-mode coordinated control strategy of distributed PV and energy storage system[J]. Proceedings of the CSEE, 2019, 39(8): 2213-2220, 4. [21] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122. Zhao Zhuoli, Yang Ping, Zheng Chengli, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122. [22] 程俊, 曲妍, 李媛, 等. 基于剩余电量估计的电池组充放电均衡策略[J]. 电力系统保护与控制, 2020, 48(3): 122-129. Cheng Jun, Qu Yan, Li Yuan, et al.Charge and discharge equalization strategy for battery packs based on remaining capacity estimation[J]. Power System Protection and Control, 2020, 48(3): 122-129.