Abstract:The compact impulse voltage generator is often used in the on-site impulse test of large-capacity electrical equipment due to its low inductance. In order to improve the synchronization performance of the device, it is necessary to set up multiple gas switches triggered by electrical pulse at the front stages. Due to the larger stray capacitance between the discharge stages, the triggering of multiple switches becomes more difficult. In 4.2MV impulse voltage generator, the external trigger system generates a hundred kilovolts nanoseconds pulse, which is applied to the trigger electrode of the first three-stage switch through isolation impedances. The isolation impedance should not only ensure that the nanosecond trigger pulse is effectively transmitted to the trigger electrode, but also isolate the overvoltage from main circuit discharge. The research results show that the resistance of kiloohms can effectively suppress the voltage coupled on the trigger system during synchronization, but reduce the amplitude of the trigger pulse seriously, and increase the wavefront time; the coupling inductance oscillates the pulse wavefront, and the inductance of microhenries cannot suppress the amplitude of the coupling voltage on the trigger system during synchronization; the capacitive coupled method can not only ensure the waveform quality of the trigger pulse, but also effectively reduce the synchronous coupling voltage on the trigger system.
马钰峰, 刘轩东, 刘现飞. 4.2MV冲击电压发生器触发脉冲耦合方式研究[J]. 电工技术学报, 2022, 37(zk1): 288-296.
Ma Yufeng, Liu Xuandong, Liu Xianfei. Research on Trigger Coupled Methods of 4.2MV Impulse Voltage Generator. Transactions of China Electrotechnical Society, 2022, 37(zk1): 288-296.
[1] 文韬, 张乔根, 赵军平, 等. 大容量电力设备标准雷电冲击现场试验技术[J]. 高电压技术, 2016, 42(9): 2968-2973. Wen Tao, Zhang Qiaogen, Zhao Junping, et al.On-site test technology of standard lightning impulse for power equipment with large capacitance[J]. High Voltage Engineering, 2016, 42(9): 2968-2973. [2] 王浩洋, 孙伟, 傅正财, 等. 负荷对冲击电压发生器输出能力的影响研究[J]. 高压电器, 2009, 45(5): 92-95. Wang Haoyang, Sun Wei, Fu Zhengcai, et al.Investigation of load impact on output capability of impulse voltage generators[J]. High Voltage Apparatus, 2009, 45(5): 92-95. [3] 张仁豫, 陈昌渔, 王昌长. 高电压试验技术[M]. 北京: 清华大学出版社, 2003. [4] 刘锡三. 高功率脉冲功率技术[M]. 北京: 国防工业出版社, 2005. [5] 王晓雨, 董守龙, 马剑豪, 等. 一种新型的双极性Marx高重频脉冲发生器[J]. 电工技术学报, 2020, 35(4): 799-806. Wang Xiaoyu, Dong Shoulong, Ma Jianhao, et al.A novel high-frequency pulse generator based on bipolar and Marx topologies[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 799-806. [6] 刘鹏, 魏浩, 孙凤举, 等. 快放电直线变压器驱动源用场畸变型低电感气体火花开关[J]. 高电压技术, 2011, 37(10): 3064-3069. Liu Peng, Wei Hao, Sun Fengju, et al.Low inductance field-distortion gas spark switches for fast linear transformer drivers[J]. High Voltage Engineering, 2011, 37(10): 3064-3069. [7] 赵通, 廖敏夫, 陈占清, 等. 不同极性激光触发真空开关触发机制研究[J].电工技术学报, 2020, 35(15): 3341-3347. Zhao Tong,Liao Minfu,Chen Zhanqing,et al.Research on the triggering mechanism of laser triggered vacuum switch with different polarities[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3341-3347. [8] Woodworth J R, Hahn K, Alexander J A, et al.Gas switch studies for linear transformer drivers[C]//16th IEEE International Pulsed Power Conference, Albuquerque, USA, 2007: 250-253. [9] Mazarakis M G, Fowler W E, LeChien K L, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Transactions on Plasma Science, 2010, 38(4): 704-713. [10] 刘轩东. 气体开关击穿特性及其对FLTD输出影响的研究[D]. 西安: 西安交通大学, 2010. [11] 何伟, 李黎, 郑万国, 等. 2.0MJ脉冲功率源的500kA气体开关系统[J]. 强激光与粒子束, 2013, 25(5): 1293-1297. He Wei, Li Li, Zheng Wanguo, et al.500kA gas switching system with 2.0MJ pulse power source[J]. High Power Laser and Particle Beams, 2013, 25(5): 1293-1297. [12] 尹佳辉, 孙凤举, 邱爱慈, 等. 多组多路输出100kV快前沿电脉冲触发系统[J]. 强激光与粒子束, 2008, 20(12): 2096-2100. Yin Jiahui, Sun Fengju, Qiu Aici, et al.Multi-module and multi-output 100 kV triggering generator system with fast rise time and low jitter[J]. High Power Laser and Particle Beams, 2008, 20(12): 2096-2100. [13] 程显, 李泰煜, 葛国伟, 等. 基于特斯拉变压器的重频脉冲源输出特性分析及优化[J]. 电工技术学报, 2020, 35(10): 2149-2157. Cheng Xian, Li Taiyu, Ge Guowei, et al.Analysis and optimization of output characteristics of repetitive pulse generator based on tesla transformer[J]. Transactions of China Electrotechnical Society, 2020, 35(10): 2149-2157. [14] 李登云, 邱爱慈, 孙凤举, 等. 100kV触发器输出脉冲的陡化[J].高电压技术, 2008, 34(6): 1255-1260. Li Dengyun, Qiu Aici, Sun Fengju, et al.Peaking risetime of the output pulse for 100 kV triggering generator[J]. High Voltage Engineering, 2008, 34(6): 1255-1260. [15] 程显, 李泰煜, 葛国伟, 等. 同轴型火花开关研制及其触发特性试验研究[J]. 电工技术学报, 2019, 34(16): 3480-3486. Cheng Xian, Li Taiyu, Ge Guowei, et al.Development of coaxial spark switch and experimental study on its trigger characteristics[J]. Transactions of China Electrotechnical Society, 2019, 34(16): 3480-3486. [16] 王宇, 姚伟博, 刘巧珏, 等. 不同电极面型的两间隙气体开关电场优化设计[J]. 电工技术学报, 2019, 34(14): 3066-3073. Wang Yu, Yao Weibo, Liu Qiaojue, et al.Optimization design of two gap gas switch electric field with different electrode profiles[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3066-3073. [17] 卡兰塔罗夫, 采伊特林. 电感计算手册[M]. 北京: 机械工业出版社, 1992. [18] 来定国, 张永民, 陈维青, 等. Marx发生器等效对地分布电容估算方法[J]. 强激光与粒子束, 2010, 22(9): 2224-2226. Lai Dingguo, Zhang Yongmin, Chen Weiqing, et al.Estimation method of Marx generator equivalent distributed capacitance[J]. High Power Laser and Particle Beams, 2010, 22(9): 2224-2226. [19] Lassalle B, Bayol F, Degnon R.Analysis of the triggering behaviour of Marx generators using Spice simulations[C]//IEEE Pulsed Power & Plasma Science, Orlando, USA, 2019: 1-4.