Large Signal Stability Analysis for DC Microgrid Clusters
Liu Sucheng1,2, Li Xiang1,2, Qin Qiangdong1,2, Xia Mengyu1,2, Liu Xiaodong1,2
1. School of Electrical and Information Engineering Anhui University of Technology Maanshan 243000 China; 2. Key Lab of Power Electronics & Motion Control Anhui University of Technology Maanshan 243000 China
Abstract:DC microgrid (DCMG) clusters are in general formed by interconnecting multiple DCMGs to achieve zonal energy sharing and optimized utilization through flexible power flow control, and thus the advantages of DC-based distributed generation systems can be fully exploited. However, small-scale DCMGs are weak grids of low inertia and high impedance, and hence the weak-weak interconnection will reduce the damping of DCMG clusters, and even lead to severe consequences like oscillation and system collapse. In the meantime, the dynamic characteristics of higher-order, strong coupling, and nonlinearity bring great challenges to the stability analysis of DCMG clusters. To address this issue, a method for large signal stability analysis of DCMG clusters was proposed based on Brayton-Moser mixed potential theory. The large signal reduced-order model of the DCMG cluster was built, and the mixed potential function that facilitates large signal stability criterion was derived in detail, and the influence of the critical parameters on the stability region was analyzed. The correctness of the analysis is verified by real-time simulation results.
刘宿城, 李响, 秦强栋, 夏梦宇, 刘晓东. 直流微电网集群的大信号稳定性分析[J]. 电工技术学报, 2022, 37(12): 3132-3147.
Liu Sucheng, Li Xiang, Qin Qiangdong, Xia Mengyu, Liu Xiaodong. Large Signal Stability Analysis for DC Microgrid Clusters. Transactions of China Electrotechnical Society, 2022, 37(12): 3132-3147.
[1] Dragičević T, Lu Xiaonan, Vasquez J C, et al.DC microgrids-part I: a review of control strategies and stabilization techniques[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4876-4891. [2] Lasseter R H.Microgrids[C]//2002 IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 2002: 305-308. [3] Ito Y, Yang Zhongqing, Akagi H.DC microgrid based distribution power generation system[C]//the 4th International Power Electronics and Motion Control Conference, Xi’an, China, 2004: 1740-1745. [4] Li Xialin, Guo Li, Li Yunwei, et al.Flexible interlinking and coordinated power control of multiple DC microgrids clusters[J]. IEEE Transa-ctions on Sustainable Energy, 2018, 9(2): 904-915. [5] Meng Lexuan, Shafiee Q, Trecate G F, et al.Review on control of DC microgrids and multiple microgrid clusters[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(3): 928-948. [6] 张伟亮, 张辉, 支娜, 等. 考虑网络损耗的基于模型预测直流微电网群能量优化策略[J]. 电力系统自动化, 2021, 45(13): 49-56. Zhang Weiliang, Zhang Hui, Zhi Na, et al.Model prediction based energy optimization strategy for DC microgrid groups considering network loss[J]. Auto-mation of Electric Power Systems, 2021, 45(13): 49-56. [7] Xie Wenqiang, Han Minxiao, Cao Wenyuan, et al.System-level large-signal stability analysis of droop-controlled DC microgrids[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4224-4236. [8] Liu Sucheng, Zheng Jiazhu, Li Run, et al.Multiple Lyapunov function-based large signal stability analysis of DC microgrid with coordinated control[C]//2019 22nd International Conference on Electrical Machines and Systems, Harbin, China, 2019: 1-6. [9] 朱晓荣, 李铮, 孟凡奇. 基于不同网架结构的直流微电网稳定性分析[J]. 电工技术学报, 2021, 36(1): 166-178. Zhu Xiaorong, Li Zheng, Meng Fanqi.Stability analysis of DC microgrid based on different grid structures[J]. Transactions of China Electrotechnical Society, 2021, 36(1): 166-178. [10] 施静容, 李勇, 贺悝, 等. 一种提升交直流混合微电网动态特性的综合惯量控制方法[J]. 电工技术学报, 2020, 35(2): 337-345. Shi Jingrong, Li Yong, He Li, et al.A comprehensive inertia control method for improving the dynamic characteristics of hybrid AC-DC microgrid[J]. Transa-ctions of China Electrotechnical Society, 2020, 35(2): 337-345. [11] 张伟亮, 张辉, 支娜, 等. 环形直流微电网故障分析与保护[J]. 电力系统自动化, 2020, 44(24): 105-110. Zhang Weiliang, Zhang Hui, Zhi Na, et al.Fault analysis and protection of ring DC microgrid[J]. Automation of Electric Power Systems, 2020, 44(24): 105-110. [12] Han Renke, Tucci M, Martinelli A, et al.Stability analysis of primary plug-and-play and secondary leader-based controllers for DC microgrid clusters[J]. IEEE Transactions on Power Systems, 2019, 34(3): 1780-1800. [13] Shafiee Q, Dragicevic T, Vasquez J C, et al.Modeling, stability analysis and active stabilization of multiple DC-microgrid clusters[C]//2014 IEEE international energy conference, Cavtat, Croatia, 2014: 1284-1290. [14] He Jinghan, Wu Xiaoyu, Wu Xiangyu, et al.Small-signal stability analysis and optimal parameters design of microgrid clusters[J]. IEEE Access, 2019, 7: 36896-36909. [15] Marx D, Magne P, Nahid-Mobarakeh B, et al.Large signal stability analysis tools in DC power systems with constant power loads and variable power loads-a review[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1773-1787. [16] Belkhayat M, Cooley R, Witulski A.Large signal stability criteria for distributed systems with constant power loads[C]//Proceedings of PESC'95-Power Elec-tronics Specialist Conference, Atlanta, GA, USA, 1995: 1333-1338. [17] Jiang Jianbo, Liu Fei, Pan Shangzhi, et al.A conservatism-free large signal stability analysis method for DC microgrid based on mixed potential theory[J]. IEEE Transactions on Power Electronics, 2019, 34(11): 11342-11351. [18] 滕昌鹏, 王玉斌, 周博恺, 等. 含恒功率负载的直流微网大信号稳定性分析[J]. 电工技术学报, 2019, 34(5): 973-982. Teng Changpeng, Wang Yubin, Zhou Bokai, et al.Large-signal stability analysis of DC microgrid with constant power loads[J]. Transactions of China Elec-trotechnical Society, 2019, 34(5): 973-982. [19] Li Zekun, Pei Wei, Ye Hua, et al.Large signal stability analysis for DC microgrid under droop control based on mixed potential theory[J]. The Journal of Engineering, 2019, 2019(16): 1189-1193. [20] Liu Haiyuan, Guo Wenzhong, Cheng Dong, et al.Stability and bifurcation analysis of DC microgrid with multiple droop control sources and loads[J]. IEEE Transactions on Power Electronics, 2021, 36(2): 2361-2372. [21] Sanchez S, Molinas M.Large signal stability analysis at the common coupling point of a DC microgrid: a grid impedance estimation approach based on a recursive method[J]. IEEE Transactions on energy conversion, 2015, 30(1): 122-131. [22] 厉泽坤, 孔力, 裴玮. 直流微电网大扰动稳定判据及关键因素分析[J]. 高电压技术, 2019, 45(12): 3993-4002. Li Zekun, Kong Li, Pei Wei.Analyses of stability criterion and key factors of DC microgrid under large disturbance[J]. High Voltage Engineering, 2019, 45(12): 3993-4002. [23] Liu Sucheng, Li Xiang, Xia Mengyu, et al.Takagi-Sugeno multimodeling-based large signal stability analysis of DC microgrid clusters[J]. IEEE Transa-ctions on Power Electronics, 2021, 36(11): 12670-12684. [24] 刘海涛, 熊雄, 季宇, 等. 直流配电下多微网系统集群控制研究[J]. 中国电机工程学报, 2019, 39(24): 7159-7167, 7489. Liu Haitao, Xiong Xiong, Ji Yu, et al.Cluster control research of multi-microgrids system under DC distribution system[J]. Proceedings of the CSEE, 2019, 39(24): 7159-7167, 7489. [25] 顾后生, 李霞林, 郭力, 等. 多直流微电网群柔性互联与控制[J]. 电力系统及其自动化学报, 2020, 32(4): 1-8. Gu Housheng, Li Xialin, Guo Li, et al.Flexible interconnection and control of multiple DC microgrid clusters[J]. Proceedings of the CSU-EPSA, 2020, 32(4): 1-8. [26] Tan D.Structured microgrids (SμGs) and flexible electronic large power transformers (FeLPTs)[J]. CES Transactions on Electrical Machines and Systems, 2020, 4(4): 255-263. [27] 胡长斌, 王慧圣, 罗珊娜, 等. 计及直流微电网扰动抑制的残差动态分散补偿控制策略[J]. 电工技术学报, 2021, 36(21): 4493-4507, 4543. Hu Changbin, Wang Huisheng, Luo Shanna, et al.Sesidual dynamic decentralized compensation control strategy considering disturbance suppression[J]. Transactions of China Electrotechnical Society, 2021, 36(21): 4493-4507, 4543. [28] 喻礼礼, 张兆云, 刘艺涛. 基于改进自适应下垂的直流微电网稳定分析与研究[J]. 电气技术, 2020, 21(5): 28-32. Yu Lili, Zhang Zhaoyun, Liu Yitao.Stability analysis and research of DC microgrid based on improved adaptive drooping[J]. Electrical Engineering, 2020, 21(5): 28-32. [29] Shafiee Q, Dragičević T, Vasquez J C, et al.Hierarchical control for multiple DC-microgrids clusters[J]. IEEE Transactions on Energy Conversion, 2014, 29(4): 922-933. [30] Liu Sucheng, Liu Rui, Zheng Jiazhu, et al.Predictive function control in tertiary level for power flow management of DC microgrid clusters[J]. Electronics Letters, 2020, 56(13): 675-676. [31] 李忠文, 程志平, 张书源, 等. 考虑经济调度及电压恢复的直流微电网分布式二次控制[J]. 电工技术学报, 2021, 36(21): 4482-4492. Li Zhongwen, Cheng Zhiping, Zhang Shuyuan, et al.Distributed secondary control for economic dispatch and voltage restoration of DC microgrid[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(21): 4482-4492. [32] 杨美辉, 周念成, 王强钢, 等. 基于分布式协同的双极直流微电网不平衡电压控制策略[J]. 电工技术学报, 2021, 36(3): 634-645. Yang Meihui, Zhou Niancheng, Wang Qianggang, et al.Unbalanced voltage control strategy of bipolar DC microgrid based on distributed cooperation[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 634-645. [33] Emadi A, Khaligh A, Rivetta C H, et al.Constant power loads and negative impedance instability in automotive systems: definition, modeling, stability, and control of power electronic converters and motor drives[J]. IEEE Transactions on Vehicular Tech-nology, 2006, 55(4): 1112-1125. [34] Peng Dongdong, Huang Meng, Li Jinhua, et al.Large-signal stability criterion for parallel-connected DC-DC converters with current source equivalence[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(12): 2037-2041. [35] Brayton R K, Moser J K.A theory of nonlinear networks. I[J]. Quarterly of Applied Mathematics, 1964, 22(1): 1-33.