The Active Damping Method for Improving the Stability of DC Microgrid
Ji Yu1, Wang Dongxu2, Wu Hongbin2, Wu Ming1, Lü Qi3
1. China Electric Power Research Institute Beijing 100192 China; 2. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China; 3. Department of Electrical Engineering Tsinghua University Beijing 100084 China
Abstract:In order to solve the unstable problem in DC microgrid caused by large amount of constant power load, this paper presents a new active damping control method based on the DC current feed forward of grid connected inverter. It also studies the mathematical model of grid connected DC-AC interfacing converter in the DC microgrid as well as the control strategy of active damping method for the DC-AC converter. Accordingly, the small signal mathematical model of the DC microgrid is established. Based on the dominant pole distribution and impedance matching principle, the adverse impacts of constant power load on the stability in DC microgrid and the improvement for the system stability by the active damping method are analyzed. The parameter design principles of the active damping are provided. The simulation and experimental results show that the proposed active damping control method can improve the stability of the DC microgrid with high penetration of constant power load.
季宇, 王东旭, 吴红斌, 吴鸣, 吕齐. 提高直流微电网稳定性的有源阻尼方法[J]. 电工技术学报, 2018, 33(2): 370-379.
Ji Yu, Wang Dongxu, Wu Hongbin, Wu Ming, Lü Qi. The Active Damping Method for Improving the Stability of DC Microgrid. Transactions of China Electrotechnical Society, 2018, 33(2): 370-379.
[1] 黄文焘, 邰能灵, 范春菊, 等. 微电网结构特性分析与设计[J]. 电力系统保护与控制, 2012, 40(18): 2-17. Huang Wentao, Tai Nengling, Fan Chunju, et al. Study on structure characteristics and designing of microgrid[J]. Power System Protection and Control Technology, 2012, 40(18): 2-17. [2] Xu Lie, Chen Dong. Control and operation of a DC microgrid with variable generation and energy storage[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2513-2522. [3] 孙建龙, 窦晓波, 张子仲, 等. 直流对等式微电网混合储能系统协调控制策略[J]. 电工技术学报, 2016, 31(4): 194-202. Sun Jianlong, Dou Xiaobo, Zhang Zizhong, et al. DC peer-to-peer coordinated control strategy of hybrid energy storage system for microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 194- 202. [4] 杨晨, 谢少军, 毛玲, 等. 基于双管Buck-Boost变换器的直流微电网光伏接口控制分析[J]. 电力系统自动化, 2012, 36(13): 45-50. Yang Chen, Xie Shaojun, Mao Ling, et al. Analysis on control strategy of two-switch buck-boost converter for photovoltaic interface in DC microgrid[J]. Automation of Electric Power Systems, 2012, 36(13): 45-50. [5] 张犁, 孙凯, 吴田进, 等. 基于光伏发电的直流微电网能量变换与管理[J]. 电工技术学报, 2013, 28(2): 248-254. Zhang Li, Sun Kai, Wu Tianjin. Energy conversion and management for DC microgrid based on photo- voltaic generation[J]. Transactions of China Electro- technical Society, 2013, 28(2): 248-254. [6] 李玉梅, 査晓明, 刘飞, 等. 带恒功率负荷的直流微电网母线电压稳定控制策略[J]. 电力自动化设备, 2014, 34(8): 57-64. Li Yumei, Zha Xiaoming, Liu Fei, et al. Stability control strategy for DC microgrid with constant power load[J]. Electric Power Automation Equipment, 2014, 34(8): 57-64. [7] 丁明, 田龙刚, 潘浩, 等. 交直流混合微电网运行控制策略研究[J]. 电力系统保护与控制, 2015, 43(9): 1-8. Ding Ming, Tian Longgang, Pan Hao, et al. Research on control strategy of hybrid AC/DC microgrid[J]. Power System Protection and Control Technology, 2015, 43(9): 1-8. [8] 朱晓荣, 蔡杰, 王毅, 等. 风储直流微网虚拟惯性控制技术[J]. 中国电机工程学报, 2016, 36(1): 49-58. Zhu Xiaorong, Cai Jie, Wang Yi, et al. Virtual inertia control of wind-battery-based DC micro-grid[J]. Proceedings of the CSEE, 2016, 36(1): 49-58. [9] 杨忠林, 查晓明, 孙建飞, 等. 基于反馈线性化的直流微电网全局稳定方法[J]. 电力自动化设备, 2015, 35(10): 10-14. Yang Zhonglin, Zha Xiaoming, Sun Jianfei, et al. Global stabilization based on feedback linearization for DC microgrid[J]. Electric Power Automation Equipment, 2015, 35(10): 10-14. [10] Radwan A, Mohamed Y. Linear active stabilization of converter dominated DC microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(1): 203-216. [11] Wu Mingfei, Lu Dylan Dah-Chuan. A novel stabilization method of LC input filter with constant power loads without load performance compromise in DC microgrids[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4552-4562. [12] 郭力, 冯怿彬, 李霞林, 等. 直流微电网稳定性分析及阻尼控制方法研究[J]. 中国电机工程学报, 2016, 36(4): 927-936. Guo Li, Feng Yibin, Li Xialin, et al. Stability analysis and research of active damping method for DC microgrids[J]. Proceedings of the CSEE, 2016, 36(4): 927-936. [13] Tahim A P N, Pagano D J, Benz E, et al. Modeling and stability analysis of islanded DC microgrids under droop control[J]. IEEE Transactions on Power Electronics, 2015, 30(8): 4597-4607. [14] Gu Yunjie, Li Wuhua, He Xiangning. Frequency- Coordinating virtual impedance for autonomous power management of DC microgrid[J]. IEEE Transactions on Power Electronics, 2015, 30(4): 2328-2337. [15] 尹璐, 赵争鸣, 张凯, 等. 一种考虑系统非理想特性的三相电压型PWM整流器控制参数设计方法[J]. 电工技术学报, 2015, 30(23): 10-17. Yin Lu, Zhao Zhengming, Zhang Kai, et al. A regulator design method for three-phase voltage- source PWM rectifiers considering the non-ideal characters of the control system[J]. Transactions of China Electrotechnical Society, 2015, 30(23): 10-17. [16] Lu Xiaonan, Sun Kai, Huang Lipei, et al. Virtual impedance based stability improvement for DC microgrids with constant power loads[C]//2014 IEEE Energy Conversion Congress and Exposition (ECCE). Aalborg, Denmark, 2014: 2670-2675. [17] 支娜, 张辉, 肖曦, 等. 分布式控制的直流微电网系统级稳定性分析[J].中国电机工程学报, 2016, 36(2): 368-378. Zhi Na, Zhang Hui, Xiao Xi, et al. System-level stability analysis of DC microgrid with distributed control strategy[J]. Proceedings of the CSEE, 2016, 36(2): 368-378. [18] 佟强, 张东来, 徐殿国. 分布式电源系统中变换器的输出阻抗与稳定性分析[J]. 中国电机工程学报, 2011, 31(12): 57-64. Tong Qiang, Zhang Donglai, Xu Dianguo. Output impedance and stability analysis of converters in distributed power systems[J]. Proceedings of the CSEE, 2011, 31(12): 57-64. [19] 支娜, 张辉, 肖曦. 提高直流微电网动态特性的改进下垂控制策略研究[J]. 电工技术学报, 2016, 31(3): 31-39. Zhi Na, Zhang Hui, Xiao Xi. Research on the improved droop control strategy for improving the dynamic characteristics of DC microgrid[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(3): 31-39.