Abstract:Pulsed discharge plasma coupled photocatalysts can effectively improve the degradation efficiency of organic pollutants in water. The addition of catalysts will significantly affect the discharge characteristics, which in turn affects the generation of aqueous species and the degradation. In the paper, the discharge characteristics, plasma properties were investigated by electrical and optical diagnosis, and concentration of aqueous reactive species and tetracycline degradation were studied with the addition of TiO2. The influence of TiO2 on discharge characteristics and degradation mechanism of tetracycline was discussed. The results show that the peak current with TiO2 is higher than that without TiO2, and the increasing of current is enhanced with the increasing of voltage, and the peak current at 10kV pulse voltage increases by 2.8 times with the addition of TiO2. The spectra intensity N2(C-B), Hα and O(3p-3s) with TiO2 were also significantly enhanced compared to those without the addition of TiO2, and the concentration of H2O2 is increased by 7 times at 10kV voltage and 1kHz frequency. The addition of TiO2 also significantly improved the degradation rate. At the voltage of 7kV, the degradation rate was 85.9% after 10 minutes' treatment, which was an increase of 33.48% compared to that without TiO2.
周子凯, 卢旭, 王森, 方志. 含二氧化钛的脉冲气液放电特性及降解四环素研究[J]. 电工技术学报, 2022, 37(22): 5862-5871.
Zhou Zikai, Lu Xu, Wang Sen, Fang Zhi. Characteristics of Pulse Gas-Liquid Discharge and Tetracycline Degradation with the Addition of TiO2. Transactions of China Electrotechnical Society, 2022, 37(22): 5862-5871.
[1] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [2] 梅丹华, 方志, 邵涛. 大气压低温等离子体特性与应用研究现状[J]. 中国电机工程学报, 2020, 40(4): 1339-1358, 1425. Mei Danhua, Fang Zhi, Shao Tao.Recent progress on characteristics and applications of atmospheric pressure low temperature plasmas[J]. Proceedings of the CSEE, 2020, 40(4): 1339-1358, 1425. [3] 董冰岩, 李贞栋, 宿雅威, 等. 高压脉冲介质阻挡放电协同金属有机骨架材料催化剂去除氮氧化物的实验研究[J]. 电工技术学报, 2021, 36(13): 2740-2748. Dong Bingyan, Li Zhendong, Su Yawei, et al.The experimental research on removal of nitrogen oxide by high voltage pulse dielectric barrier discharge combined with metal-organic framework materials catalyst[J]. Transactions of China Electro- technical Society, 2021, 36(13): 2740-2748. [4] 张明, 李丁晨, 李传, 等. 离子风的应用研究进展[J]. 电工技术学报, 2021, 36(13): 2749-2766. Zhang Ming, Li Dingchen, Li Chuan, et al.Research progress in the application of ion wind[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2749-2766. [5] 孔刚玉, 刘定新. 气体等离子体与水溶液的相互作用研究: 意义、挑战与新进展[J]. 高电压技术, 2014, 40(10): 2956-2965. Kong Gangyu, Liu Dingxin.Researches on the interaction between gas plasmas and aqueous solu- tions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965. [6] Lu X, Keidar M, Laroussi M, et al.Transcutaneous plasma stress: from soft-matter models to living tissues[J]. Materials Science and Engineering R: Reports, 2019, 138: 36-59. [7] Ranieri P, Sponsel N, Kizer J, et al.Plasma agriculture: review from the perspective of the plant and its ecosystem[J]. Plasma Processes and Polymers, 2021, 18(1): 2000162. [8] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al.Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [9] 李劲卓, 刘峰, 方志. HMDSO含量对纳秒脉冲激励Ar/HMDSO射流放电特性的影响[J]. 电工技术学报, 2021, 36(13): 2675-2683, 2696. Li Jinzhuo, Liu Feng, Fang Zhi.Effect of HMDSO ratio on discharge characteristics of Ar/HMDSO jets excited by nanosecond pulse[J]. Transactions of China Electrotechnical Society, 2021, 36(13): 2675-2683, 2696. [10] 王慧娟, 郭贺, 杨文明, 等. 脉冲放电等离子体/活性炭协同降解染料废水及过氧化氢的生成[J]. 高电压技术, 2016, 42(5): 1401-1408. Wang Huijuan, Guo He, Yang Wenming, et al.Formation of hydrogen peroxide and degradation of dye wastewater by pulsed discharge plasma combined with activated carbon[J]. High Voltage Engineering, 2016, 42(5): 1401-1408. [11] Xin Yanbin, Sun Bing, Liu Jingyu, et al.Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma[J]. Renewable Energy, 2021, 171: 728-734. [12] He Dong, Sun Yabing, Xin Lu, et al.Aqueous tetracycline degradation by non-thermal plasma combined with nano-TiO2[J]. Chemical Engineering Journal, 2014, 258: 18-25. [13] Duan Lijuan, Jiang Nan, Lu Na, et al.A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions[J]. Plasma Science and Technology, 2018, 20(5): 054009. [14] Zhang Tianqi, Zhou Renwu, Wang Peiyu, et al.Degradation of cefixime antibiotic in water by atmospheric plasma bubbles: performance, degra- dation pathways and toxicity evaluation[J]. Chemical Engineering Journal, 2021, 421: 127730. [15] Wang Huijuan, Shen Zhou, Yan Xin, et al.Dielectric barrier discharge plasma coupled with WO3 for bisphenol A degradation[J]. Chemosphere, 2021, 274: 129722. [16] 谢瑞, 陈超, 李武华, 等. 气液相等离子体放电水处理反应器及苯酚降解分析[J]. 高电压技术, 2010, 36(11): 2791-2796. Xie Rui, Chen Chao, Li Wuhua, et al.Analysis on gas-liquid hybrid plasma discharge reactor for wastewater treatment and phenol degradation[J]. High Voltage Engineering, 2010, 36(11): 2791-2796. [17] Machala Z, Tarabová B, Sersenová D, et al.Chemical and antibacterial effects of plasma activated water: correlation with gaseous and aqueous reactive oxygen and nitrogen species, plasma sources and air flow conditions[J]. Journal of Physics D: Applied Physics, 2019, 52(3): 034002. [18] Tarabová B, Lukeš P, Janda M, et al.Specificity of detection methods of nitrites and ozone in aqueous solutions activated by air plasma[J]. Plasma Processes and Polymers, 2018, 15(6): 1800030. [19] 徐晗, 陈泽煜, 刘定新. 大气压冷等离子体处理水溶液: 液相活性粒子检测方法综述[J]. 电工技术学报, 2020, 35(17): 3561-3582. Xu Han, Chen Zeyu, Liu Dingxin.Aqueous solutions treated by cold atmospheric plasmas: a review of the detection methods of aqueous reactive species[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3561-3582. [20] 刘亚韪, 周子凯, 王森, 等. 大气压空气针-水结构脉冲气-液放电特性研究[J]. 强激光与粒子束, 2021, 33(6): 74-81. Liu Yawei, Zhou Zikai, Wang Sen, et al.Research on the characteristics of atmospheric pressure air pulse gas-liquid discharge using a needle-water elec- trode[J]. High Power Laser and Particle Beams, 2021, 33(6): 74-81. [21] Moon J, Yun C Y, Chung K W, et al.Photocatalytic activation of TiO2 under visible light using Acid Red 44[J]. Catalysis Today, 2003, 87(1-4): 77-86. [22] 孙昊, 张帅, 韩伟, 等. 纳秒脉冲火花放电高效转化甲烷的实验研究[J]. 电工技术学报, 2019, 34(4): 880-888. Sun Hao, Zhang Shuai, Han Wei, et al.An experi- mental investigation of nanosecond pulsed spark discharge for high-efficient methane conversion[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 880-888. [23] 张若兵, 韩倩婷, 李爽, 等. 螺旋针-环结构等离子体射流放电过程分析[J]. 电工技术学报, 2017, 32(20): 90-96. Zhang Ruobing, Han Qianting, Li Shuang, et al.Discharge process analysis of plasma jet with spiral needle-ring electrode[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 90-96. [24] 赵紫璐, 杨德正, 王文春, 等. 大气压空气纳秒脉冲阵列式线-线SDBD等离子体的电学及发射光谱特性研究[J]. 光谱学与光谱分析, 2019, 39(4): 1236-1241. Zhao Zilu, Yang Dezheng, Wang Wenchun, et al.Electrical and OES characters of nanosecond pulsed array wire-to-wire SDBD plasma in atmospheric air[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1236-1241. [25] 万静, 宁文军, 张雨晖, 等. 气隙宽度对大气压氦气介质阻挡放电多脉冲特性影响的仿真研究[J]. 电工技术学报, 2019, 34(4): 871-879. Wan Jing, Ning Wenjun, Zhang Yuhui, et al.Influ- ence of gap width on the multipeak characteristics of atmospheric pressure helium dielectric barrier discharges—a numerical approach[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 871-879. [26] Liu Kun, Yang Zhihao, Liu Shiting.Study of the characteristics of DC multineedle-to-water plasma- activated water and its germination inhibition efficiency: the effect of discharge mode and gas flow[J]. IEEE Transactions on Plasma Science, 2020, 48(4): 969-979. [27] Wang Sen, Yang Dezheng, Zhou Rusen, et al.Mode transition and plasma characteristics of nanosecond pulse gas-liquid discharge: effect of grounding configuration[J]. Plasma Processes and Polymers, 2020, 17(3): 1900146. [28] 杨国清, 邵朱夏, 曹一崧, 等. NaOH气液两相滑动弧放电处理含硫废气的研究[J]. 电工技术学报, 2017, 32(8): 114-120, 137. Yang Guoqing, Shao Zhuxia, Cao Yisong, et al.Treatment of flue gas containing sulfur by gas-liquid phase gliding arc discharge combined with NaOH[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 114-120, 137. [29] Shao Tao, Yu Yang, Zhang Cheng, et al.Excitation of atmospheric pressure uniform dielectric barrier discharge using repetitive unipolar nanosecond-pulse generator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(6): 1830-1837. [30] Zhou Renwu, Zhou Rusen, Wang Peiyu, et al.Plasma-activated water: generation, origin of reactive species and biological applications[J]. Journal of Physics D: Applied Physics, 2020, 53(30): 303001. [31] Bradu C, Kutasi K, Magureanu M, et al.Reactive nitrogen species in plasma-activated water: gen- eration, chemistry and application in agriculture[J]. Journal of Physics D: Applied Physics, 2020, 53(22): 223001. [32] Basavarajappa P S, Patil S B, Ganganagappa N, et al.Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7764-7778. [33] Tang Shoufeng, Yuan Deling, Rao Yandi, et al.Persulfate activation in gas phase surface discharge plasma for synergetic removal of antibiotic in water[J]. Chemical Engineering Journal, 2018, 337: 446-454. [34] Zhou Xiongfeng, Liang Jianping, Zhao Zilu, et al.Ultra-high synergetic intensity for humic acid removal by coupling bubble discharge with activated carbon[J]. Journal of Hazardous Materials, 2021, 403: 123626.