Review on Partial Discharge Characteristics of Bubble Impurity Phase in Transformer Oil
Zhang Ning1, Liu Shili1, Hao Jian2, Chen Houhe1
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology Ministry of Education Northeast Electric Power University Jilin 132012 China; 2. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China
Abstract:As the core equipment in the transmission and transformation system, large power transformers assume the key role of transforming voltage and transmitting electric energy. However, with the widespread use of large-capacity oil-immersed power transformers, their operating temperature rises and the oil-paper insulation system tends to become more complex, leading to a gradual increase in the chances of moisture in the oil-immersed insulation paper, decomposition of fiber molecules breaking chains and aging of transformer oil insulation, all of which promote the precipitation of suspended bubbles in the oil channel. These bubbles, under the combined effect of electromagnetic, thermal and fluid fields, show extremely complex morphological evolution and movement patterns, resulting in partial bubble discharge and subsequent oil channel breakdown, which has been one of the main factors threatening the insulation performance of transformers. A large number of research results have been obtained by domestic and foreign scholars for the exploration of bubble partial discharge characteristics in transformer oil. It has been shown that the electrohydrodynamic behavior of the gas-liquid two-phase flow in transformer oil and the dielectric discharge mechanism are closely related, and the precise description and quantitative expression of the bubble and transformer oil discharge phenomena and laws require the precise capture of the key characteristic physical quantities in the discharge process. However, the detailed microscopic mechanism of transformer oil insulation failure is still unclear due to the limitations of current scientific and technological means and applied mathematical methods, and thus the discharge evolution of transformer oil containing bubbles cannot be accurately characterized. This paper reviews the research on partial discharge characteristics of transformer oil with bubbles in the past two decades, and systematically reviews and discusses them from three perspectives: theoretical analysis, simulation models and experimental tests, so as to provide some reference for the subsequent in-depth research. First of all, the paper analyzes the theoretical models of bubble discharge in oil proposed by domestic and foreign scholars, and illustrates from three aspects, including the mechanism of partial discharge induced by bubbles in transformer oil, the mechanism of discharge induced by bubbles in transformer oil that has developed streamer, and summarizes the mathematical and plasma models of suspended bubble discharge involved; meanwhile, standing from the perspective of numerical simulation, the paper summarizes the analysis approach and application of bubble dynamic behavior and discharge characteristics, and analyzes the corresponding relationship between the force of bubbles in oil and bubble motion, deformation, coalescence, crushing and splitting in detail. Therefore, starting from the different disciplines, the paper summarizes and analyzes the influence mechanism of various factors on bubble dynamics behavior explored by many scholars through simulation, and carefully analyzes the differences and connections of multi-physical field coupling in bubble dynamics behavior research in different disciplines; in addition, the paper explores the experimental research on bubble motion characteristics and its discharge law at home and abroad, and shows the device platform of the classical experiments, and analyzes the test results mainly from the influence of bubble dynamics on partial discharge in oil and the discharge characteristics of bubbles in transformer oil under different voltage types. Finally, based on the shortcomings of existing research, the paper combines theories and techniques such as molecular simulation, multi-physical field coupling and digital twin to foresee potential research directions for the insulation performance of transformer oil containing bubbles, which provides a certain reference for vigorously promoting the research on the relationship between the electrohydrodynamic behavioral properties of bubbles and the discharge mechanism.
[1] 曾鸣, 张硕. “十四五”电力规划的综合能源发展探析[J]. 中国电力企业管理, 2020(13): 26-28. [2] 王圣, 孙雪丽, 徐静馨, 等. 我国“十四五”电力发展规划中煤电环境保护要点分析[J]. 电力学报, 2020, 35(2): 143-148, 165. Wang Sheng, Sun Xueli, Xu Jingxin, et al.Analysis on key points of environmental protection about coal power in China's 14th five-year plan of power sector[J]. Journal of Electric Power, 2020, 35(2): 143-148, 165. [3] 高萌, 张乔根, 丁玉琴, 等. 油浸纸绝缘热致气泡形成特性[J]. 高电压技术, 2018, 44(11): 3634-3640. Gao Meng, Zhang Qiaogen, Ding Yuqin, et al.Characteristics of thermal-induced bubble formation in oil-impregnated paper insulation[J]. High Voltage Engineering, 2018, 44(11): 3634-3640. [4] Przybylek P, Nadolny Z, Moscicka-Grzesiak H.Bubble effect as a consequence of dielectric losses in cellulose insulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(3): 913-919. [5] 王健一, 周远翔, 程涣超, 等. 加氢异构非环烷基变压器油的最新进展与展望[J]. 中国电机工程学报, 2020, 40(16): 5373-5382. Wang Jianyi, Zhou Yuanxiang, Cheng Huanchao, et al.Recent progress and prospect of hydroisomerized non-naphthenic transformer oil[J]. Proceedings of the CSEE, 2020, 40(16): 5373-5382. [6] 李剑, 姚舒瀚, 杜斌, 等. 植物绝缘油及其应用研究关键问题分析与展望[J]. 高电压技术, 2015, 41(2): 353-363. Li Jian, Yao Shuhan, Du Bin, et al.Analysis to principle problems and future prospect of research on vegetable insulating oils and their applications[J]. High Voltage Engineering, 2015, 41(2): 353-363. [7] 廖瑞金, 林元棣, 杨丽君, 等. 温度、水分、老化对变压器油中糠醛及绝缘纸老化评估的影响和修正[J]. 中国电机工程学报, 2017, 37(10): 3037-3044. Liao Ruijin, Lin Yuandi, Yang Lijun, et al.Effects and correction of temperature, moisture and aging on furfural content in insulating oil and aging assessment of insulation paper[J]. Proceedings of the CSEE, 2017, 37(10): 3037-3044. [8] 廖瑞金, 杨丽君, 郑含博, 等. 电力变压器油纸绝缘热老化研究综述[J]. 电工技术学报, 2012, 27(5): 1-12. Liao Ruijin, Yang Lijun, Zheng Hanbo, et al.Reviews on oil-paper insulation thermal aging in power transformers[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 1-12. [9] 李立浧, 饶宏, 董旭柱, 等. 计算高电压工程学的思考与展望[J]. 高电压技术, 2018, 44(11): 3441-3453. Li Licheng, Rao Hong, Dong Xuzhu, et al.Prospect of computational high voltage engineering[J]. High Voltage Engineering, 2018, 44(11): 3441-3453. [10] 严璋, 朱德恒. 高电压绝缘技术[M]. 3版. 北京: 中国电力出版社, 2015. [11] Zhang Rui, Zhang Qiaogen, Guo Chong, et al.Bubbles in transformer oil: dynamic behavior, internal discharge, and triggered liquid breakdown[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(1): 86-94. [12] 王同磊, 张乔根, 倪鹤立, 等. 变压器油中阴极放电起始过程的气泡模型[J]. 高电压技术, 2017, 43(6): 2042-2048. Wang Tonglei, Zhang Qiaogen, Ni Heli, et al.Bubble model of breakdown initiation process from cathode in transformer oil[J]. High Voltage Engineering, 2017, 43(6): 2042-2048. [13] Korobeynikov S M, Ridel A V, Karpov D I, et al.Mechanism of partial discharges in free helium bubbles in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(5): 1605-1611. [14] Melcher J R, Taylor G I.Electrohydrodynamics: a review of the role of interfacial shear stresses[J]. Annual Review of Fluid Mechanics, 1969, 1: 111-146. [15] Saville D A.Electrohydrodynamics: the Taylor-melcher leaky dielectric model[J]. Annual Review of Fluid Mechanics, 1997, 29: 27-64. [16] López-Herrera J M, Popinet S, Herrada M A. A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid[J]. Journal of Computational Physics, 2011, 230(5): 1939-1955. [17] Huang Y M, Liu Q, Wang Z D.Effects of temperature on partial discharges and streamers in an ester liquid under AC stress[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(5): 1512-1519. [18] Shen Shuhang, Liu Qiang, Wang Zhongdong.Effect of electric field uniformity on positive streamer and breakdown characteristics of transformer liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 1814-1822. [19] 王琪, 王萌, 王珏, 等. 纳秒脉冲下变压器油两相流注放电仿真研究[J]. 强激光与粒子束, 2020, 32(2): 63-67. Wang Qi, Wang Meng, Wang Jue, et al.Two-phase streamer characteristics in transformer oil under nanosecond impulses voltages[J]. High Power Laser and Particle Beams, 2020, 32(2): 63-67. [20] 贺博, 王鹏, 吴锴, 等. 多物理场中染污绝缘油内杂质相动力学行为研究综述[J]. 电工技术学报, 2022, 37(1): 266-282. He Bo, Wang Peng, Wu Kai, et al.Reviews on impurity phase dynamics in contaminated insulating oil under multi-physical field conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 266-282. [21] 蔡新景, 王凯奇, 王新新, 等. 不同湿度下空气的流注放电特性[J]. 高电压技术, 2015, 41(2): 633-638. Cai Xinjing, Wang Kaiqi, Wang Xinxin, et al.Properties of streamer discharges in air with variable humidity[J]. High Voltage Engineering, 2015, 41(2): 633-638. [22] 张赟, 曾嵘, 黎小林, 等. 大气中短空气间隙流注放电过程数值仿真[J]. 中国电机工程学报, 2008, 28(28): 6-12. Zhang Yun, Zeng Rong, Li Xiaolin, et al.Numerical simulation on streamer discharge of short air gap of atmospheric air[J]. Proceedings of the CSEE, 2008, 28(28): 6-12. [23] 牛海清, 徐乐平, 李小潇, 等. SF6气体正极性电晕放电特性仿真研究[J]. 高电压技术, 2021, 47(11): 4063-4071. Niu Haiqing, Xu Leping, Li Xiaoxiao, et al.Simulation and study of positive corona characteristics in SF6 gas[J]. High Voltage Engineering, 2021, 47(11): 4063-4071. [24] Meek J M, Craggs J D.Electrical breakdown of gases[M]. Chichester: Wiley, 1978. [25] Jadidian J, Hwang J G, Zahn M, et al.Migration-ohmic charge transport in liquid-solid insulation systems[C]//2011 IEEE International Conference on Dielectric Liquids, Trondheim, Norway, 2011: 1-4. [26] 李晨颉, 郑昕雷, 赵政, 等. 大气压下连续脉冲流注放电演变过程的二维全局粒子模拟仿真研究[J]. 高电压技术, 2022, 48(2): 789-797. Li Chenjie, Zheng Xinlei, Zhao Zheng, et al.Two-dimensional global-particle simulation of streamer evolution process under continuous pulses in nitrogen at atmospheric pressure[J]. High Voltage Engineering, 2022, 48(2): 789-797. [27] 廖瑞金, 刘康淋, 伍飞飞, 等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术, 2014, 40(4): 965-971. Liao Ruijin, Liu Kanglin, Wu Feifei, et al.Simulative study on characteristic of heavy particles in negative bar-plate DC corona discharge[J]. High Voltage Engineering, 2014, 40(4): 965-971. [28] Peng Yao, Chen Feng, Song Yaozu, et al.Single bubble behavior in direct current electric field[J]. Chinese Journal of Chemical Engineering, 2008, 16(2): 178-183. [29] Dong W, Li R Y, Yu H L, et al.An investigation of behaviours of a single bubble in a uniform electric field[J]. Experimental Thermal and Fluid Science, 2006, 30(6): 579-586. [30] Atten P.Electrohydrodynamic instability and motion induced by injected space charge in insulating liquids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(1): 1-17. [31] Jalaal M, Khorshidi B, Esmaeilzadeh E, et al.Behavior of a single bubble in a non-uniform DC field[J]. Chemical Engineering Communications, 2010, 198(1): 19-32. [32] Ghosh P.A comparative study of the film‐drainage models for coalescence of drops and bubbles at flat interface[J]. Chemical Engineering & Technology, 2004, 27(11): 1200-1205. [33] Brackbill J U, Kothe D B, Zemach C.A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. [34] 程涵, 魏威, Bilallqbal Ayubi, 等. 直流GIL中线形金属微粒电动力学行为研究[J]. 电工技术学报, 2021, 36(24): 5283-5293. Cheng Han, Wei Wei, Ayubi B, et al.Study on the electrodynamic behavior of linear metal particles in DC gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5283-5293. [35] Zhao Tao, Liu Yunpeng, Lü Fangcheng, et al.Study on dynamics of the bubble in transformer oil under non-uniform electric field[J]. IET Science, Measurement & Technology, 2016, 10(5): 498-504. [36] 张永泽, 唐炬, 潘成, 等. 温度对流动变压器油中悬移气泡局部放电特性的影响与作用机制[J]. 电工技术学报, 2020, 35(6): 1357-1367. Zhang Yongze, Tang Ju, Pan Cheng, et al.Effects of temperature on partial discharge characteristics induced by suspended bubbles in flowing transformer oil and the mechanism[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1357-1367. [37] 张永泽, 唐炬, 潘成, 等. 流动变压器油中气泡动力学行为及电场分布仿真[J]. 高电压技术, 2020, 46(6): 2004-2012. Zhang Yongze, Tang Ju, Pan Cheng, et al.Simulation of the bubble dynamics and electric field distribution in flowing transformer oil[J]. High Voltage Engineering, 2020, 46(6): 2004-2012. [38] 蔡丹, 刘列. 强电场下气泡形变对液体绝缘的影响[J]. 强激光与粒子束, 2011, 23(11): 2966-2970. Cai Dan, Liu Lie.Impact of air bubble deformation on dielectric liquid subjected to strong electric field[J]. High Power Laser and Particle Beams, 2011, 23(11): 2966-2970. [39] Bjørklund E.The level-set method applied to droplet dynamics in the presence of an electric field[J]. Computers & Fluids, 2009, 38(2): 358-369. [40] Yue Pengtao, Feng J J, Liu Chun, et al.A di?use-interface method for simulating two-phase ?ows of complex ?uids[J]. Journal of Fluid Mechanism, 2004, 515: 293-317. [41] 张永泽. 含气泡流动变压器油的局部放电和击穿特性研究[D]. 重庆: 重庆大学, 2019. [42] 梁猛, 李青, 王奎升, 等. 匀强电场作用下分散相液滴的变形和破裂[J]. 化工学报, 2014, 65(3): 843-848. Liang Meng, Li Qing, Wang Kuisheng, et al.Deformation and breakup of dispersed phase droplets in uniform electric field[J]. CIESC Journal, 2014, 65(3): 843-848. [43] Ovsyannikov A G, Korobeynikov S M, Vagin D V.Simulation of apparent and true charges of partial discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(6): 3687-3693. [44] Korobeynikov S M, Ridel A V, Medvedev D A.Deformation of bubbles in transformer oil at the action of alternating electric field[J]. European Journal of Mechanics - B/Fluids, 2019, 75: 105-109. [45] 李昕晨. 双气泡聚并的流体力学行为研究[D]. 北京: 北京化工大学, 2015. [46] Hirt C W, Nichols B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. [47] van Sint Annaland M, Deen N G, Kuipers J A M. Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method[J]. Chemical Engineering Science, 2005, 60(11): 2999-3011. [48] 冯俊杰. 气液两相体系气泡的流体力学行为研究[D]. 北京: 北京化工大学, 2016. [49] Pan Kuolong, Chen Zhijen.Simulation of bubble dynamics in a microchannel using a front-tracking method[J]. Computers & Mathematics with Applications, 2014, 67(2): 290-306. [50] van Sint Annaland M, Dijkhuizen W, Deen N G, et al. Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method[J]. AIChE Journal, 2006, 52(1): 99-110. [51] 周云龙, 孙斌, 陈飞. 气液两相流型智能识别理论及方法[M]. 北京: 科学出版社, 2007. [52] 董鑫, 许晓飞, 刘凤霞, 等. 鼓泡反应器中幂律型流体流动与传质特性[J]. 化工学报, 2018, 69(6): 2446-2454. Dong Xin, Xu Xiaofei, Liu Fengxia, et al.Hydrodynamic and mass transfer characteristics of power-law fluids in bubbling reactors[J]. CIESC Journal, 2018, 69(6): 2446-2454. [53] 王志强. 不同流动方式下气泡运动特性的数值模拟[D]. 南昌: 南昌大学, 2018. [54] 李兆谞. 螺旋管内气液两相流流型及转换机理研究[D]. 北京: 清华大学, 2018. [55] 张牧昊. 基于气泡动力学的气液两相流流型转变机理[D]. 重庆: 重庆大学, 2019. [56] Liu Jingru, Zhu Chunying, Fu Taotao, et al.Systematic study on the coalescence and breakup behaviors of multiple parallel bubbles rising in power-law fluid[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4850-4860. [57] 黄程蓉, 陈小鹏, 周丹, 等. 黏性溶液中单个气泡的运动形变[J]. 高校化学工程学报, 2018, 32(5): 1012-1018. Huang Chengrong, Chen Xiaopeng, Zhou Dan, et al.Shape evolution of a single rising bubble in viscous solutions[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1012-1018. [58] 赵腾飞, 张华. 气泡碰撞过程中形变及破碎现象分析[J]. 计算物理, 2022, 39(1): 41-52. Zhao Tengfei, Zhang Hua.Analysis of deformation and breakage during bubble collision[J]. Chinese Journal of Computational Physics, 2022, 39(1): 41-52. [59] 张淑君. 气泡动力学特性的三维数值模拟研究[D]. 南京: 河海大学, 2006. [60] 崔杰, 许威, 陈志鹏, 等. 高粘度流体中气泡与自由液面相互作用实验研究[J]. 江苏科技大学学报(自然科学版), 2021, 35(1): 8-15. Cui Jie, Xu Wei, Chen Zhipeng, et al.Experimental study of interaction between bubbles and free surfaces of high viscosity liquids[J]. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(1): 8-15. [61] Liu Yunpeng, Chao Nijie, Zhao Tao, et al.Mechanism and numerical model of bubble effect in oil-paper insulation based on microtubule model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(5): 1529-1537. [62] Oommen T V, Lindgren S R.Bubble evolution from transformer overload[C]//2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294), Atlanta, GA, USA, 2001: 137-142. [63] 刘秋实, 李庆民, Niyomugabo E L, 等. 极不均匀电场下绝缘油中气泡动力学特性与迁移机制[J]. 中国电机工程学报, 2022, 42(9): 3460-3469. Liu Qiushi, Li Qingmin, Niyomugabo E L, et al.Bubble dynamics and migration mechanism in insulation oil under extremely inhomogeneous electric field[J]. Proceedings of the CSEE, 2022, 42(9): 3460-3469. [64] 蔡丹. 气泡影响液体绝缘性能的模拟研究[D]. 长沙: 国防科学技术大学, 2011. [65] 赵涛, 刘云鹏, 律方成, 等. 交流电场下变压器油中气泡动力学特性仿真[J]. 系统仿真学报, 2016, 28(12): 3081-3086, 3094. Zhao Tao, Liu Yunpeng, Lü Fangcheng, et al.Bubble dynamics simulation in transformer oil under AC electric field[J]. Journal of System Simulation, 2016, 28(12): 3081-3086, 3094. [66] 唐炬, 朱黎明, 麻守孝, 等. 绝缘油中悬移气泡局部放电特性[J]. 高电压技术, 2010, 36(6): 1341-1346. Tang Ju, Zhu Liming, Ma Shouxiao, et al.Characteristics of suspended and mobile microbubble partial discharge in insulation oil[J]. High Voltage Engineering, 2010, 36(6): 1341-1346. [67] Zhou Jiabin, Zhu Wenbing, Tang Ju, et al.Simulation of bubble deformation in flowing transformer oil[C]//2018 International Conference on Power System Technology (POWERCON), Guangzhou, China, 2018: 3632-3637. [68] 彭耀, 陈凤, 宋耀祖, 等. 电场作用下单气泡行为的数值模拟[J]. 清华大学学报(自然科学版), 2008, 48(2): 294-297. Peng Yao, Chen Feng, Song Yaozu, et al.Numerical simulations of single bubble behavior in DC electric fields[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(2): 294-297. [69] 张奥林. EHD作用下气泡动力学行为及强化换热机理研究[D]. 北京: 北京化工大学, 2018. [70] Hara M, Wang Zhenchao, Saito H.Thermal bubble breakdown in liquid nitrogen under nonuniform fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1994, 1(4): 709-715. [71] Aka-Ngnui T, Beroual A.Bubble dynamics and transition into streamers in liquid dielectrics under a high divergent electric field[J]. Journal of Physics D: Applied Physics, 2001, 34(9): 1408-1412. [72] 孙继星, 陈维江, 李志兵, 等. 直流电场下运动金属微粒的带电估算与碰撞分析[J]. 高电压技术, 2018, 44(3): 779-786. Sun Jixing, Chen Weijiang, Li Zhibing, et al.Charge estimation and impact analysis of moving metal particle under DC electric field[J]. High Voltage Engineering, 2018, 44(3): 779-786. [73] 王有元, 李熙, 李原龙, 等. 交直流复合电压下铜颗粒在油中的分布及对绝缘油击穿特性的影响[J]. 电工技术学报, 2018, 33(23): 5581-5590. Wang Youyuan, Li Xi, Li Yuanlong, et al.Distribution of copper particle in insulating oil and its influence on breakdown strength of insulating oil under combined AC and DC voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5581-5590. [74] 骆欣瑜, 唐炬, 潘成, 等. 直流均匀电场下流动变压器油中金属微粒运动行为研究[J]. 高电压技术, 2020, 46(3): 824-831. Luo Xinyu, Tang Ju, Pan Cheng, et al.Motion behaviors of metallic particles in moving transformer oil under uniform DC electric fields[J]. High Voltage Engineering, 2020, 46(3): 824-831. [75] 程林, 李兴兴, 唐炬, 等. 不同温度下含金属微粒的流动液体绝缘介质放电形成过程与机理分析[J]. 高电压技术, 2018, 44(9): 2917-2925. Cheng Lin, Li Xingxing, Tang Ju, et al.Discharge process and its mechanism analysis in flowing liquid dielectric containing metal particles at different temperatures[J]. High Voltage Engineering, 2018, 44(9): 2917-2925. [76] 李金忠, 张乔根, 李原, 等. 直流电压下油纸绝缘杂质小桥的形成过程[J]. 高电压技术, 2016, 42(12): 3901-3908. Li Jinzhong, Zhang Qiaogen, Li Yuan, et al.Generation process of impurity bridges in oil-paper insulation under DC voltage[J]. High Voltage Engineering, 2016, 42(12): 3901-3908. [77] 李原, 张乔根, 赵毅. 直流电压下纤维小桥对油纸复合绝缘局部放电特性的影响[J]. 高电压技术, 2018, 44(11): 3611-3618. Li Yuan, Zhang Qiaogen, Zhao Yi.Effect of cellulose bridge on characteristics of partial discharge in oil-paper insulation under DC voltage[J]. High Voltage Engineering, 2018, 44(11): 3611-3618. [78] 郝建, 但敏, 廖瑞金, 等. 颗粒属性对矿物绝缘油直流击穿特性的影响差异及原因分析[J]. 电工技术学报, 2019, 34(24): 5270-5281. Hao Jian, Dan Min, Liao Ruijin, et al.Influence of particle properties on DC breakdown characteristics of mineral oil and its difference reason analysis[J]. Transactions of China Electrotechnical Society, 2019, 34(24): 5270-5281. [79] 汪佛池, 程祥瑞, 赵涛, 等. 油纸绝缘中气泡的生成特性及其对击穿性能的影响[J]. 高压电器, 2020, 56(1): 61-67. Wang Fochi, Cheng Xiangrui, Zhao Tao, et al.Characteristics of bubble formation in oil-paper insulation and its influence on the breakdown[J]. High Voltage Apparatus, 2020, 56(1): 61-67. [80] Heinrichs F W. Bubble formation in power transformer windings at overload temperatures[J]. IEEE Transactions on Power Apparatus and Systems, 1979, PAS-98(5): 1576-1582. [81] 陈凤, 彭耀, 宋耀祖, 等. 电场作用下单气泡行为的可视化[J]. 清华大学学报(自然科学版), 2007, 47(5): 722-725. Chen Feng, Peng Yao, Song Yaozu, et al.Experimental visualization of single bubbles in an electric field[J]. Journal of Tsinghua University (Science and Technology), 2007, 47(5): 722-725. [82] Zhang Ruobing, Li Xin, Wang Zhiyuan.Pattern of bubble evolution in liquids under repetitive pulsed power[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(2): 353-360. [83] Korobeynikov S M, Ridel A V, Medvedev D A, et al.Registration and simulation of partial discharges in free bubbles at AC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(4): 1035-1042. [84] 肖畅, 肖发福, 许滋奇. 流动状态下绝缘油中气泡放电特性和影响因素的研究[J]. 通信电源技术, 2018, 35(6): 3-4. Xiao Chang, Xiao Fafu, Xu Ziqi.Study on bubble discharge characteristics and influencing factors in insulating oil based on flow state[J]. Telecom Power Technology, 2018, 35(6): 3-4. [85] 唐炬, 刘知远, 杨景刚, 等. 绝缘油中悬移微粒放电特性实验平台构建[J]. 高电压技术, 2016, 42(11): 3507-3514. Tang Ju, Liu Zhiyuan, Yang Jinggang, et al.Construction of experimental platform for suspended particles discharge characteristic in insulating oil[J]. High Voltage Engineering, 2016, 42(11): 3507-3514. [86] Zhang Yongze, Tang Ju, Pan Cheng, et al.Comparison of PD and breakdown characteristics induced by metal particles and bubbles in flowing transformer oil[J]. IEEE Access, 2019, 7: 48098-48108. [87] Tang Ju, Zhang Yongze, Pan Cheng, et al.Impact of oil velocity on partial discharge characteristics induced by bubbles in transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2018, 25(5): 1605-1613. [88] Tang Ju, Ma Shouxiao, Li Xingxing, et al.Impact of velocity on partial discharge characteristics of moving metal particles in transformer oil using UHF technique[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2207-2212. [89] Li Shuaibing, Gao Bo, Wu Guangning.Influences of oil flow speed and temperature on partial discharge properties in transformer oil[C]//2016 Australasian Universities Power Engineering Conference (AUPEC), Brisbane, QLD, Australia, 2016: 1-4. [90] Zhang Yongze, Tao Xiantao, Pan Cheng, et al.Role of air bubbles in the breakdown of flowing transformer oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(5): 1752-1760. [91] Lu Li, Ichimura S, Rokunohe T.Interaction between partial discharge and generated bubbles under repeated lightning impulses in transformers using a complex structure model[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(2): 727-735. [92] Mo Shenyang, Zhao Zhibin, Li Xuebao, et al.Partial discharge characteristics of bubble flow under AC non-uniform electric field in FC-72[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(4): 1119-1127. [93] Panov V A, Kulikov Y M, Son E E, et al.Electrical breakdown voltage of transformer oil with gas bubbles[J]. High Temperature, 2014, 52(5): 770-773. [94] Gadzhiev M K, Isakaev E K, Tyuftyaev A S, et al.Electrical breakdown of transformer oil with sulfur hexafluoride and air bubbles[J]. Technical Physics, 2015, 60(7): 1101-1103. [95] 张若兵, 王致远, 陈志浩. 均匀电场重频脉冲作用下的水中气泡击穿[J]. 高电压技术, 2021, 47(1): 331-337. Zhang Ruobing, Wang Zhiyuan, Chen Zhihao.Gas bubbles breakdown in water under repetitive pulsed uniform electric field[J]. High Voltage Engineering, 2021, 47(1): 331-337. [96] Qin Chunxu, He Yan, Shi Bing, et al.Experimental study on breakdown characteristics of transformer oil influenced by bubbles[J]. Energies, 2018, 11: 634.