Abstract:The stress motion of linear metal particles in DC GIL can easily cause gas gap breakdown or surface flashover of insulators, which reduces the insulation performance of GIL and seriously affects the safe and reliable operation of the DC transmission system. In order to study the electrodynamic behavior mechanism of linear metal particles in DC GIL, the free particle experiment device and observation platform are built, and the particle electrodynamic model under DC is established. Through experiments and simulations, the characteristics of the linear particle lifting, motion and gas gap breakdown caused by particles are obtained, and the reasons of the particle lifting and motion are analyzed from the microscopic view. The results show that the lifting voltage is related to the radius and independent of length and voltage polarity. The voltage polarity does not affect the lifting voltage amplitude of metal particles. The particle motion and the resulting air gap breakdown are related to the particle radius, particle length and voltage polarity. The smaller the radius and the longer the length of the linear metal particles, the easier it is to cause the air gap to breakdown; the irregular shape of the linear metal particles strengthens the electric field distortion, and the polarity effect is more obvious. The effect of corona polarity leads to the lifting and motion of the particles under positive and negative polarities and the gas gap breakdown characteristics caused by motion show obvious laws. If the particles are lifted, under the DC positive polarity voltage, the linear metal particles will jump, rotate or standing upright near the lower electrode, and it is difficult to penetrate the air gap; under the negative polarity voltage, the particles will move through the air gap, and the phenomenon of flying firefly is easy to appear. It provides theoretical guidance for the prevention and control of the linear metal particle pollution in DC GIL.
程涵, 魏威, Bilal lqbal Ayubi, 孙优良, 张黎. 直流GIL中线形金属微粒电动力学行为研究[J]. 电工技术学报, 2021, 36(24): 5283-5293.
Cheng Han, Wei Wei, Bilal lqbal Ayubi, Sun Youliang, Zhang Li. Study on the Electrodynamic Behavior of Linear Metal Particles in DC Gas Insulated Transmission Line. Transactions of China Electrotechnical Society, 2021, 36(24): 5283-5293.
[1] Cookson A H, Farish O, Sommerman G M.Effect of conducting particles on AC corona and breakdown in compressed SF6[J]. IEEE Transactions on Power Apparatus and Systems, 1972, 91(4): 1329-1338. [2] 罗毅, 唐炬, 潘成, 等. 直流GIS/GIL盆式绝缘子表面电荷主导积聚方式的转变机理[J]. 电工技术学报, 2019, 34(23): 5039-5048. Luo Yi, Tang Ju, Pan Cheng, et al.The transition mechanism of surface charge accumulation dominating way in DC GIS/GIL[J]. Transactions of China Elec- trotechnical Society, 2019, 34(23): 5039-5048. [3] Xiao Song, Zhang Xiaoxing, Zhuo Ran, et al.The influence of Cu, Al and Fe free metal particles on the insulating performance of SF6 in C-GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(4): 2299-2305. [4] 孙秋芹, 罗宸江, 王峰, 等. 直流GIL导体表面金属颗粒跳跃运动特性研究[J]. 电工技术学报, 2018, 33(22): 5206-5216. Sun Qiuqin, Luo Chenjiang, Wang Feng, et al.Jumping characteristics of metal particle on the surface of DC gas insulated transmission line conductor[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5206-5216. [5] 范建斌, 李鹏, 李金忠, 等. ±800kV特高压直流GIL关键技术研究[J]. 中国电机工程学报, 2008, 28(13): 1-7. Fan Jianbin, Li Peng, Li Jinzhong, et al.Study on key technology of ±800kV UHVDC GIL[J]. Proceedings of the CSEE, 2008, 28(13): 1-7. [6] 张连根, 路士杰, 李成榕, 等. GIS中线形和球形金属微粒的运动行为和危害性[J]. 电工技术学报, 2019, 34(20): 4218-4225. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Motor behavior and hazard of spherical and linear particle in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4218-4225. [7] 贾江波, 陈姝敏, 杨兰均, 等. GIS中绝缘子附近自由导电微粒无害化研究[J]. 高压电器, 2004, 5(1): 370-372. Jia Jiangbo, Chen Shumin, Yang Lanjun, et al.Study of deactivation of free conducting particle near spacer in GIS[J]. High Voltage Apparatus, 2004, 5(1): 370-372. [8] Lebedev N N, Skal Skaya I P. Force acting on a conducting sphere in the field of a parallel plane condenser[J]. Soviet Physics-Technical Physics, 1962, 7(3): 268-270. [9] Sakai K I, Abella D L, Khan Y, et al.Experimental studies of free conducting wire particle behavior between nonparallel plane electrodes with AC voltages in air[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(3): 418-424. [10] 李庆民, 王健, 李伯涛, 等. GIS/GIL中金属微粒污染问题研究进展[J]. 高电压技术, 2016, 42(3): 849-860. Li Qingmin, Wang Jian, Li Botao, et al.Review on metal particle contamination in GIS/GIL[J]. High Voltage Engineering, 2016, 42(3): 849-860. [11] 李庆民, 刘思华, 王健, 等. 直流气体绝缘线路中自由金属微粒的局部放电特性与影响因素[J]. 高电压技术, 2017, 43(2): 367-374. Li Qingmin, Liu Sihua, Wang Jian, et al.Characteri- stics of partial discharges caused by free metal particle and influencing factors in DC gas insulated line[J]. High Voltage Engineering, 2017, 43(2): 367-374. [12] 王健, 李庆民, 李伯涛, 等. 考虑非弹性随机碰撞与SF6/N2混合气体影响的直流GIL球形金属微粒运动行为研究[J]. 中国电机工程学报, 2015, 35(15): 3971-3978. Wang Jian, Li Qingmin, Li Botao, et al.Motion analysis of spherical conducting particle in DC GIL considering the influence of inelastic random collisions and SF6/N2 gaseous mixture[J]. Proceedings of the CSEE, 2015, 35(15): 3971-3978. [13] 贾江波, 陶风波, 杨兰均, 等. GIS中不均匀直流电场下球状自由导电微粒运动分析[J]. 中国电机工程学报, 2006, 26(8): 106-111. Jia Jiangbo, Tao Fengbo, Yang Lanjun, et al.Motion analysis of spherical free conducting particle in non- uniform electric field of GIS under DC voltage[J]. Proceedings of the CSEE, 2006, 26(8): 106-111. [14] 贾江波, 查玮, 张乔根, 等. 交流电压下预埋电极对绝缘子附近导电微粒运动的影响[J]. 中国电机工程学报, 2008, 28(10): 136-141. Jia Jiangbo, Zha Wei, Zhang Qiaogen, et al.Influence of metal inserted polytetrafluorethylene spacer on the motion of conducting particle under AC voltage[J]. Proceedings of the CSEE, 2008, 28(10): 136-141. [15] 孙继星, 戴琪, 边凯, 等. 自由导电微粒受迫运动过程与振动特性[J]. 电工技术学报, 2018, 33(22): 5224-5232. Sun Jixing, Dai Qi, Bian Kai, et al.Forced movement process and vibration characteristics of free con- ductive particle[J]. Transactions of China Elec- trotechnical Society, 2018, 33(22): 5224-5232. [16] 孙继星, 陈维江, 李志兵, 等. 直流电场下运动金属微粒的带电估算与碰撞分析[J]. 高电压技术, 2018, 44(3): 779-786. Sun Jixing, Chen Weijiang, Li Zhibing, et al.Charge estimating and impact analysis of moving metal particle under DC electric field[J]. High Voltage Engineering, 2018, 44(3): 779-786. [17] 律方成, 刘宏宇, 李志兵, 等. 直流电压下SF6气体中电极覆膜对金属微粒启举的影响机理[J]. 电工技术学报, 2017, 32(13): 239-247. Lü Fangcheng, Liu Hongyu, Li Zhibing, et al.Influence mechanism of dielectric coated electrodes on metallic particle lift-off in SF6 gas under DC voltage[J]. Proceedings of the CSEE, 2017, 32(13): 239-247. [18] 律方成, 刘宏宇, 阴凯, 等. 直流GIL不均匀场中金属微粒运动的数值模拟及放电特性分析[J]. 中国电机工程学报, 2017, 37(10): 2798-2806. Lü Fangcheng, Liu Hongyu, Yin Kai, et al.Numerical simulation and discharge characteristic analysis of metallic particle motion in non-uniform electric field of DC GIL[J]. Proceedings of the CSEE, 2017, 37(10): 2798-2806. [19] Rizk F M, Comsa R P.Particle-initiated breakdown in SF6 insulated systems under high direct voltage[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(3): 825-836. [20] Budiman F N, Khan Y, Arainy A A, et al.Estimation of particle initiated PD inception voltage around spacer in GIS[C]//4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, 2013: 517-521. [21] 张连根, 路士杰, 李成榕, 等. 气体绝缘组合电器中微米量级金属粉尘运动和放电特征[J]. 电工技术学报, 2020, 35(2): 444-452. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Movement and discharge characteristics of micron- scale metal dust in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 444-452. [22] 汪沨, 邱毓昌. 直流气体绝缘开关装置绝缘设计的探讨[J]. 中国电力, 2002, 11(1): 50-53. Wang Feng, Qiu Yuchang.Discussion on the electrical insulation design of the HVDC gas insulated switchgear[J]. Electric Power, 2002, 11(1): 50-53. [23] Hara M, Akazaki M.A method for prediction of gaseous discharge threshold voltage in the presence of a conducting particle[J]. Journal of Electrostatics, 1977, 2(3): 223-239. [24] Pedersen A, Lebeda J, Vibholm S.Analysis of spark breakdown characteristics for sphere gaps[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 8(1): 975-978. [25] Hara M, Negara Y, Setoguchi M, et al.Particle- triggered pre-breakdown phenomena in atmospheric air gap under AC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 1071-1081. [26] 武占成, 张希军, 胡有志. 气体放电[M]. 北京: 国防工业出版社, 2012. [27] 黄旭炜, 倪潇茹, 王健, 等. 苯硫醚聚酰亚胺电极覆膜材料合成及直流应力下对金属微粒运动特性的抑制作用[J]. 电工技术学报, 2018, 33(20): 4712-4721. Huang Xuwei, Ni Xiaoru, Wang Jian, et al.Synthesis of phenyl-thioether polyimide as the electrode coating film and its suppression effect on motion behavior of the metal particles under DC stresses[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4712-4721. [28] 姚雨杭, 潘成, 唐炬, 等. 交直流复合电压下流动变压器油中金属微粒运动规律和局部放电特性研究[J]. 电工技术学报, 2021, 36(15): 3101-3112. Yao Yuhang, Pan Cheng, Tang Ju, et al.Motion behaviors and partial discharge characteristics of metallic particles in moving transformer oil under AC/DC composite voltage[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3101-3112. [29] 王渊, 马国明, 周宏扬, 等. SF6/N2混合气体中直流叠加雷电冲击复合电压作用下绝缘子闪络特性[J].电工技术学报, 2019, 34(14): 3084-3092. Wang Yuan, Ma Guoming, Zhou Hongyang, et al.Flashover characteristics of spacers in SF6/N2-filled under composite voltage of DC and lightning impulse[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3084-3092. [30] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part I: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4649-4662. [31] 周远翔, 赵健康, 刘睿, 等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术, 2014, 40(9): 2593-2612. Zhou Yuanxiang, Zhao Jiankang, Liu Rui, et al.Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612. [32] 张乔根, 游浩洋, 马径坦, 等. 直流电压下SF6中自由线形导电微粒运动特性[J]. 高电压技术, 2018, 44(3): 696-703. Zhang Qiaogen, You Haoyang, Ma Jingtan, et al.Motion behavior of free conducting wire-type particles in SF6 gas under DC voltage[J]. High Voltage Engineering, 2018, 44(3): 696-703. [33] Sakai K I, Labrado A D, Suehiro J, et al.Charging and behavior of a spherically conducting particle on a dielectrically coated electrode in the presence of electrical gradient force in atmospheric air[J]. IEEE Transactions Dielectrics and Electrical Insulation, 2002, 9(4): 577-588. [34] Asano K, Anno K, Higashiy Y.The behavior of charged conducting particles in electric fields[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 33(3): 679-686. [35] 高丽娟. 考虑等离子体-静电耦合场的复合绝缘子均匀电晕老化电极设计[D]. 北京: 华北电力大学, 2018. [36] Neufeld P D, Janzen A R, Aziz R A.Empirical equations to calculate 16 of the transport collision integrals Ω(l, s)* for the lennard-jones (12-6) potential[J]. The Journal of Chemical Physics, 1972, 57(3): 1100-1102. [37] Yuan Xiaohui, Raja L L.Computational study of capacitively coupled high-pressure glow discharges in helium[J]. IEEE Transactions on Plasma Science, 2003, 31(4): 495-503. [38] Hsu C P, Jewell L N E, Krichtafovitch I A. Miniaturization of electrostatic fluid accelerators[J]. Journal of Microelectromechanical Systems, 2007, 16(4): 809-815. [39] Georghiou G E, Morrow R, Metaxas A C.The effect of photoemission on the streamer development and propagation in short uniform gaps[J]. Journal of Physics D: Applied Physics, 2001, 34(2): 200-208. [40] Morrow R, Lowke J J.Streamer propagation in air[J]. Journal of Physics D: Applied Physics, 1997, 30(4): 614-627. [41] 杨津基. 气体放电[M]. 北京: 科学出版社, 1983. [42] 胡孝勇. 气体放电[M]. 哈尔滨: 哈尔滨工业大学出版社, 1994. [43] 王健, 李庆民, 李伯涛, 等. 直流GIL中自由线形金属微粒的运动与放电特性[J]. 中国电机工程学报, 2016, 36(17):4793-4800. Wang Jian, Li Qingmin, Li Botao, et al.Motion and discharge behavior of the free conducting wire-type particle within DC GIL[J]. Proceedings of the CSEE, 2016, 36(17): 4793-4800.