Abstract:Compared with the conventional flow control technology, surface dielectric barrier discharge (SDBD) has a great application prospect due to its advantages of fast response speed, small volume, flexible control position and low cost. In this paper, SDBD discharge experiments were carried out respectively under different voltage amplitudes and frequencies. Using Schlieren diagnostic technique, a systematic comparative analysis of induced airflow under different voltage amplitudes and frequencies was conducted. Here, pixel intensity integral method was used to deduce the velocity distribution of airflow induced by SDBD. Meanwhile, the influences of voltage amplitude and frequency on the induced airflow were analyzed qualitatively. The experimental results reveal that electrical power consumption of SDBD has an exponential relationship with voltage amplitude approximately, and a linear relationship with frequency approximately. As voltage amplitude and frequency increase, the length of the induced airflow tends to be in stable after increasing. In the longitudinal direction, the velocity distribution of the induced airflow shows a trend of increasing first and then decreasing to zero, and its maximum velocity increases with the increasing of voltage amplitude and frequency. Under different voltage amplitudes and frequencies, almost all the induced airflow velocity curves reach the maximum at 0.2mm above the medium surface and hardly vary with the changes of voltage amplitude and frequency.
[1] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015. [2] 吴阳阳, 贾敏, 王蔚龙, 等. 新型介质阻挡放电等离子体激励器的放电与诱导流动特性实验[J]. 电工技术学报, 2016, 31(24): 45-53. Wu Yangyang, Jia Min, Wang Weilong, et al. Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53. [3] 周亦骁, 方志, 邵涛. Ar/O 2 和Ar/H 2 O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O 2 and Ar/H 2 O mixtures[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 229-238. [4] 方志, 钱晨, 姚正秋. 大气压环环电极结构射流放电模型建立及仿真[J]. 电工技术学报, 2016, 31(4): 218-228. Fang Zhi, Qian Chen, Yao Zhengqiu. The model and simulation studies for ring-ring electrode structure jet discharge at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 218-228. [5] 车学科, 聂万胜, 田希晖, 等. 表面介质阻挡放电等离子体诱导流场相似准则及应用[J]. 高电压技术, 2016, 42(3): 769-774. Che Xueke, Nie Wansheng, Tian Xihui, et al. Similarity criteria of surface dielectric barrier discharge plasma induced flow-field and its application[J]. High Voltage Engineering, 2016, 42(3): 769-774. [6] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF 4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [7] 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. Zhang Cheng, Shao Tao, Long Kaihua, et al. Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. [8] 杨波, 孙敏, 白敏菂. 介质阻挡放电等离子体抑制翼型流动分离的实验研究[J]. 高电压技术, 2014, 40(1): 212-218. Yang Bo, Sun Min, Bai Mindi. Experimental investigation of airfoil flow separation control by dielectric barrier discharge plasma actuator[J]. High Voltage Engineering, 2014, 40(1): 212-218. [9] 吴云, 李应红. 等离子体流动控制和点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038. Wu Yun, Li Yinghong. Progress in research of plasma-assisted flow control, ignition and com- bustion[J]. High Voltage Engineering, 2014, 40(7): 2024-2038. [10] Houser N M, Gimeno L, Hanson R E, et al. Microfabrication of dielectric barrier discharge plasma actuators for flow control[J]. Sensors and Actuators A, 2013, 201: 101-104. [11] Subrata Roy, Zhao Pengfei, Arnob DasGupta, et al. Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds[J]. Aip Advances, 2016, 6(2): 025322. [12] Mark Riherd, Subrata Roy. Measurements and simulations of a channel flow powered by plasma actuators[J]. Journal of Applied Physics, 2012, 112(5): R35-R64. [13] Maxime Forte, Luc Leger, Jerome Pons, et al. Plasma actuatours for airflow control: measurement of the non-stationary induced flow velocity[J]. Journal of Electroatatics, 2005, 63(6): 929-936. [14] 田学敏, 田希晖, 车学科, 等. 高频交流激励表面介质阻挡放电特性及其应用[J]. 高电压技术, 2014, 40(10): 3119-3124. Tian Xuemin, Tian Xihui, Che Xueke, et al. Characteristics and applications of high-frequency AC surface dielectric barrier discharge[J]. High Voltage Engineering, 2014, 40(10): 3119-3124. [15] 梁华, 李应红, 宋慧敏, 等. 等离子体气动激励诱导空气流动的PIV研究[J]. 实验流体力学, 2011, 25(4): 22-25, 36. Liang Hua, Li Yinghong, Song Huimin, et al. PIV investigation on flow induced by plasma aerodynamic actuation[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 22-25, 36. [16] 周小旭, 钟诚文, 李凯, 等. 等离子体EHD顺电加速效应影响因素实验研究[J]. 实验力学, 2010, 25(3): 286-292. Zhou Xiaoxu, Zhong Chengwen, Li Kai, et al. Experimental studies on influencing factors of plasma paraelectric EHD acceleration effect[J]. Journal of Experimental Mechanics, 2010, 25(3): 286-292. [17] 赵小虎, 李应红, 李益文, 等. 介质阻挡放电等离子体气动激励的动量特性[J]. 航空动力学报, 2010, 25(8): 1791-1798. Zhao Xiaohu, Li Yinghong, Li Yiwen, et al. Momentum characteristic of dielectric barrier discharge plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2010, 25(8): 1791-1798. [18] 姜慧, 邵涛, 车学科, 等. 纳秒脉冲表面放电等离子体影响因素的实验研究[J]. 高电压技术, 2012, 38(7): 1704-1710. Jiang Hui, Shao Tao, Che Xueke, et al. Experimental study on the factors influencing nanosecond-pulsed surface discharge plasma[J]. High Voltage Engin- eering, 2012, 38(7): 1704-1710. [19] 李应红, 吴云. 等离子体流动控制技术研究进展[J]. 空军工程大学学报(自然科学版), 2012, 13(3): 1-5. Li Yinghong, Wu Yun. Progress of research on plasma flow control technology[J]. Journal of Air Force Engineering University, 2012, 13(3): 1-5. [20] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5): 31-37. Zhang Cheng, Shao Tao, Yu Yang, et al. Characteri- stics of unipolar nanosecond pulse DBD and its application on surface treatment of polyimer films[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37. [21] 郝泽宇, 于红, 杨亮, 等. 大气压表面介质阻挡放电流动控制影响因素研究[J]. 真空科学与技术报, 2015, 35(7): 837-843. Hao Zeyu, Yu Hong, Yang Liang, et al. Experimental study of airflow control by surface dielectric barrier discharge at atmospheric pressure[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(7): 837-843. [22] Ashpis D E, Laun M C, Griebeler E L. Progress toward accurate measurements of power con- sumptions of DBD plasma actuators[C]//50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012. [23] Enloe C L, McLaughlin T E, Van Dyken R D, et al. Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology[J]. AIAA Journal, 2004, 42(3): 589-594. [24] Forte M, Jolibois J, Pons J, et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experi- ments in Fluids, 2007, 43(6): 917-928. [25] Forte M, Jolibois J, Moreau E, et al. Optimization of a dielectric barrier discharge actuator-application to airflow control[J]. Journal of Logic Language & Information, 2006, 21(1): 117-139. [26] Cristofolini A, Neretti G, Roveda F, et al. Schlieren imaging in a dielectric barrier discharge actuator for airflow control[J]. Journal of Applied Physics, 2012, 111(3): 033302. [27] Roveda F. Numerical analysis of dielectric barrier discharge[D]. Bologna, Italy: Alma Mater Studiorum Universitàdi Bologna, 2012.