1. School of Electrical Engineering & Automation Harbin Institute of Technology Harbin 150001 China; 2. Laboratory for Space Environment and Physical Sciences Harbin Institute of Technology Harbin 150001 China
Abstract:As a developing innovative technology, the modulation strategy with dual-frequency can effectively enhance plasma properties of atmospheric pressure dielectric barrier discharges (DBDs) and provide a possible approach to control and optimize the key plasma parameters, even realize the separate control of the electron density and gas temperature. In this paper, a self-consistent fluid model coupling the semi-kinetics method is used to study the plasma discharge characteristics and the impacts of different matching modes on the key plasma parameters. Thus, the basic strategy for the modulation method is acquired based on the nonlinear coupling gain between two frequencies. Besides, the separate tuning mechanism is analyzed by means of the spatial evolutions of electron density, ion density, electric field and impact ionization of electrons. The work is important for deep understanding of the dual-frequency modulated DBD plasmas as well as the promotion of the associated applications.
[1] 商克峰, 王浩, 岳帅, 等. 结构及供电电源对沿面介质阻挡放电装置放电特性及臭氧生成的影响[J]. 电工技术学报, 2017, 32(2): 53-60. Shang Kefeng, Wang Hao, Yue Shuai, et al. Effect of configuration and power supply on the discharge characteristics and ozone generation of a surface dielectric barrier discharge device[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 53-60. [2] 张凯, 王瑞雪, 韩伟, 等. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15. Zhang Kai, Wang Ruixue, Han Wei, et al. Progress of heavy oil processing by plasma technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15. [3] 胡建杭, 方志, 章程, 等. 介质阻挡放电处理增强聚合物薄膜表面亲水性[J]. 高电压技术, 2008, 34(5): 883-887. Hu Jianghang, Fang Zhi, Zhang Cheng, et al. Improvement of hydrophilicity of polymer film surface using dielectric barrier discharge treatment[J]. High Voltage Engineering, 2008, 34(5): 883-887. [4] 卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6): 1416-1425. Lu Xinpei. Plasma jets and their biomedical appli- cation[J]. High Voltage Engineering, 2011, 37(6): 1416-1425. [5] Hiromasa Tanaka, Masaaki Mizuno, Masaru Hori. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density[J]. Physics of Plasmas, 2015, 22(12): 122004. [6] 周亦骁, 方志, 邵涛. Ar/O2和Ar/H2O中大气压等离子体射流放电特性的比较[J]. 电工技术学报, 2014, 29(11): 229-238. Zhou Yixiao, Fang Zhi, Shao Tao. Comparison of discharge characteristics of atmospheric pressure plasma jet in Ar/O2 and Ar/H2O mixtures[J]. Transa- ctions of China Electrotechnical Society, 2014, 29(11): 229-238. [7] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 160-165. Ding Zhengfang, Fang Zhi, Xu Jing. Influences of CF4 content on discharge characteristics of argon plasma jet under atmopheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 160-165. [8] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al. Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [9] Nie Qiuyue, Ren Chunsheng, Wang Dezhen, et al. Self-organized pattern formation of an atmospheric pressure plasma jet in a dielectric barrier discharge configuration[J]. Applied Physics Letters, 2007, 90(22): 221504(3). [10] Zhang Jiao, Wang Yanhui, Wang Dezhen. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge[J]. Physics of Plasmas, 2013, 20(8): 082315. [11] Park J, Henins I, Herrmann H W, et al. An atmospheric pressure plasma source[J]. Applied Physics Letters, 2000, 76(3): 288-290. [12] Shi Jianjun, Liu Dawei, Kong M G. Plasma stability control using dielectric barriers in radio-frequency atmospheric pressure glow discharges[J]. Applied Physics Letters, 2006, 89(8): 081502(3). [13] Zhang Dingzong, Wang Yanhui, Wang Dezhen. Two-dimensional numerical study of a period-two dielectric-barrier discharge in atmospheric argon[J]. Physics of Plasmas, 2012, 19(4): 043503. [14] Shi J J, Kong M G. Mechanisms of the ? and ?? modes in radio-frequency atmospheric glow dis- charges[J]. Journal of Applied Physics, 2005, 97(2): 023306(6). [15] Cao Z, Nie Q Y, Kong M G. A cold atmospheric pressure plasma jet controlled with spatially separated dual-frequency excitations[J]. Journal of Physics D: Applied Physics, 2009, 42(22): 222003-222008. [16] C O’Neill, Waskoenig J, Gans T. Tailoring electron energy distribution functions through energy con- finement in dual radio-frequency driven atmospheric pressure plasmas[J]. Applied Physics Letters, 2012, 101(15): 154107(4). [17] Huang Xiaojiang, Dai Lu, Guo Ying, et al. Dual- frequency glow discharges in atmospheric helium[J]. Plasma Physics, 2015, 22(10): 103515. [18] 邵涛, 严萍. 大气压气体放电及其等离子体应用[M]. 北京: 科学出版社, 2015. [19] Kulikovsky A A. A more accurate scharfetter- gummel algorithm of electron transport for semi- conductor and gas discharge simulation[J]. Journal of Computational Physics, 1995, 119(1): 149-155. [20] Oda A, Sakai Y, Akashi H, et al. One-dimensional modelling of low-frequency and high-pressure xe barrier discharge for the design of excimer lamps[J]. Journal of Physics D: Applied Physics, 1999, 32(21): 2726-2736(11). [21] Shi J J, Liu D W, Kong M G. Mitigating plasma constriction using dielectric barriers in radio- frequency atmospheric pressure glow discharges[J]. Applied Physics Letters, 2007, 90(3): 031505(3).