Experimental and Optical Characteristics of Nanosecond-Pulse Surface Sliding Discharge
Wang Yang1, 2, Zhang Cheng2, 3, Xie Qing1, Yan Ping2, 3, Shao Tao2, 3
1. School of Electrical and Electronic Engineering North China Electric Power University Baoding 071003 China; 2. Institute of Electrical Engineering Chinese Academy of Sciences Beijing 100190 China; 3. Key Laboratory of Power Electronics and Electric Drive Chinese Academy of Sciences Beijing 100190 China
Abstract:In this paper, in order to investigate the discharge characteristics of the nanosecond-pulse surface sliding discharge, a new type of three-electrode structure actuator is adopted to generate sliding discharge driven by a negative DC high voltage combined with a nanosecond pulse. The effects of the DC voltage, the pulse voltage and their potential differences on the discharge characteristics of nanosecond-pulse sliding discharge are studied. The experimental results show that the amplitude of the DC voltage has slight effect on the current through the pulse voltage electrode, but it significantly affects the current through the DC voltage electrode when the pulse voltage is fixed. Moreover, current through the DC voltage electrode increases with the increasing of DC voltage, while the peak current increases faster when the sliding discharge occurs. Furthermore, the ignition time of current through the DC voltage electrode is earlier at larger amplitude of DC voltage. The currents through the pulse and DC voltage electrodes increase with the amplitude of applied pulse voltage when the DC voltage is fixed. There is a minimal voltage threshold (the voltage difference between the pulse component and DC component) for igniting a nanosecond-pulse sliding discharge. It is found that the sliding discharge occurs when the potential difference is 22kV, and at this time the instantaneous power, consumption energy and the state energy appear significant increasing trends. The current through the pulse voltage electrode is dominated by the pulse component while the current through the DC voltage electrode is dominated by the DC component under the identical potential difference. Power and energy are primarily affected by the proportion of pulse component. In addition, discharge images are taken by a digital camera. The images show that the nanosecond-pulse sliding discharge occurs when applying suitable pulse voltage and negative DC high voltage on the first-electrode and the third-electrode respectively. In addition, the plasma discharge region significantly extends and the large area plasma can be obtained on the surface of the dielectric barrier.
[1] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al. Atmo- spheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [2] 吴云, 李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术, 2014, 40(7): 2024-2038. Wu Yun, Li Yinghong. Progress in research of plasma-assisted flow control, ignition and com- bustion[J]. High Voltage Engineering, 2014, 40(7): 2024-2038. [3] Yang L, Yan H J, Qi X H, et al. Geometry effects of SDBD actuator on atmospheric-pressure discharge plasma airflow acceleration[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3653-3661. [4] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al. Distribution characteristics of nanosecond-pulsed surface diele- ctric barrier discharge at different electrode gaps [J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [5] 李清泉, 郝玲艳. 沿面介质阻挡放电等离子体及其应用[J]. 高电压技术, 2016, 42(4): 1079-1090. Li Qingquan, Hao Lingyan. Surface dielectric barrier discharge plasma and its applications[J]. High Voltage Engineering, 2016, 42(4): 1079-1090. [6] Moreau E, Benard N, Alicalapa F, et al. Electro- hydrodynamic force produced by a corona discharge between a wire active electrode and several cylinder electrodes—Application to electric propulsion[J]. Journal of Electrostatics, 2015, 76: 194-200. [7] 王磊, 章程, 罗振兵, 等. 面向等离子体合成射流应用的微秒脉冲源研制[J]. 强激光与粒子束, 2015, 28(4): 133-139. Wang Lei, Zhang Cheng, Luo Zhenbing, et al. Compact microsecond-pulse generator for plasma synthetic jet[J]. High Power Laser and Particle Beams, 2015, 28(4): 133-139. [8] 周杨, 姜慧, 章程, 等. 纳秒和微秒脉冲激励表面介质阻挡放电特性对比[J]. 高电压技术, 2014, 40(10): 3091-3097. Zhou Yang, Jiang Hui, Zhang Cheng, et al. Comparison of discharge characteristics in surface dielectric barrier discharge driven by nanosecond and microsecond pulsed powers[J]. High Voltage Engin- eering, 2014, 40(10): 3091-3097. [9] Shao T, Jiang H, Zhang C, et al. Time behaviour of discharge current in case of nanosecond-pulse surface dielectric barrier discharge[J]. Europhysics Letters, 2013, 101(4): 45002. [10] Jiang H, Shao T, Zhang C, et al. Experimental study of Q-V Lissajous figures in nanosecond-pulse surface discharges[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1101-1111. [11] Peschke P, Goekce S, Leyland P, et al. Investigation of nanosecond pulse dielectric barrier discharges in still air and in transonic flow by optical methods[J]. Journal of Physics D: Applied Physics, 2015, 49(2): 025204. [12] Benard N, Moreau E. Electrical and mechanical characteristics of surface AC dielectric barrier dis- charge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11): 1-43. [13] Yan H, Yang L, Qi X, et al. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control[J]. Journal of Applied Physics, 2015, 117(6): 063302. [14] 姜慧, 邵涛, 车学科, 等. 纳秒脉冲表面放电等离子体影响因素的实验研究[J]. 高电压技术, 2012, 38(7): 1704-1710. Jiang Hui, Shao Tao, Che Xueke, et al. Experimental study on the factors influencing nanosecond-pulsed surface discharge plasma[J]. High Voltage Engin- eering, 2012, 38(7): 1704-1710. [15] 赵光银, 梁华, 李应红, 等. 表面介质阻挡纳秒脉冲放电能量特性和诱导流动特性研究[J]. 中国科学: 技术科学, 2015, 45(11): 1195-1206. Zhao Guangyin, Liang Hua, Li Yinghong, et al. Study of electrical characterization and induced flow by nanosecond pulsed dielectric barrier discharge actuator[J]. Scientia Sinica Techologica, 2015, 45(11): 1195-1206. [16] 田学敏, 田希晖, 车学科, 等. 高频交流激励表面介质阻挡放电特性及其应用[J]. 高电压技术, 2014, 40(10): 3119-3124. Tian Xuemin, Tian Xihui, Che Xueke, et al. Characteristics and applications of high-frequency AC surface dielectric barrier discharge[J]. High Voltage Engineering, 2014, 40(10): 3119-3124. [17] Moreau E, Sosa R, Artana G. Electric wind produced by surface plasma actuators: a new dielectric barrier discharge based on a three-electrode geometry[J]. Journal of Physics D: Applied Physics, 2008, 41(11): 115204. [18] Louste C, Artana G, Moreau E, et al. Sliding discharge in air at atmospheric pressure: electrical properties[J]. Journal of Electrostatics, 2005, 63(6): 615-620. [19] Bychkov V, Kuz'min G, Minaev I, et al. Sliding discharge application in aerodynamics[C]//41st Aerospace Sciences Meeting and Exhibit, Reno Nevada USA, 2003: 2003-530. [20] Sosa R, Kelly H, Grondona D, et al. Electrical and plasma characteristics of a quasi-steady sliding discharge[J]. Journal of Physics D: Applied Physics, 2008, 41(3): 035202. [21] Song H M, Li Y H, Zhang Q G, et al. Experimental investigation on the characteristics of sliding discharge plasma aerodynamic actuation[J]. Plasma Science and Technology, 2011, 13(5): 608. [22] Bayoda K D, Benard N, Moreau E. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: electrical, optical, and mechanical characteristics[J]. Journal of Applied Physics, 2015, 118(6): 063301. [23] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Mingzhe, Liu Dingxin, Li Mei, et al. Research status and new progress on the numerical simulation of non-equilibrium plasma[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [24] 刘熊, 林海丹, 梁义明, 等. 空气中微秒脉冲沿面放电对环氧树脂表面特性影响研究[J]. 电工技术学报, 2015, 30(13): 158-165. Liu Xiong, Lin Haidan, Liang Yiming, et al. Effect of atmospheric-pressure microsecond pulsed discharges on epoxy resin surface[J]. Transactions of China Electrotechnical Society, 2015, 30(13): 158-165. [25] 蔡新景, 陈承伟, 王新新, 等. 直流和脉冲电压下绝缘沿面闪络试验系统的研制[J]. 高压电器, 2015, 51(5): 35-39. Cai Xinjing, Chen Chengwei, Wang Xinxin, et al. Design of experimental apparatus for dielectric surface flashover under DC and pulsed voltage[J]. High Voltage Apparatus, 2015, 51(5): 35-39. [26] 潘如政, 李敏堂, 赵争菡, 等. Al 2 O 3 陶瓷在脉冲电压下的激光触发沿面闪络特性研究[J]. 电工技术学报, 2015, 30(12): 314-319. Pan Ruzheng, Li Mintang, Zhao Zhenghan, et al. Study of Al 2 O 3 ceramics’ laser-triggered surface flashover characteristics with pulsed voltage[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 314-319. [27] 牛宗涛, 章程, 王瑞雪, 等. 脉冲重复频率对微秒脉冲滑动放电特性影响的实验研究[J]. 电工技术学报, 2016, 31(19): 191-198. Niu Zongtao, Zhang Cheng, Wang Ruixue, et al. Experimental study on the effect of the pulse repeti- tion frequency on the characteristics of microsecond- pulse gliding discharges[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 191-198. [28] Correale G, Winkel R, Kotsonis M. Energy deposition characteristics of nanosecond dielectric barrier discharge plasma actuators: Influence of dielectric material[J]. Journal of Applied Physics, 2015, 118(8): 083301. [29] He K, Pang L, Wang X, et al. A novel method of calculating the energy deposition curve of nanose- cond pulsed surface dielectric barrier discharge[J]. Plasma Sources Science and Technology, 2015, 24(2): 025034.