The Effect of Voltage Stabilizer and Its Content on the Insulation Properties of 500kV HVDC Cable Insulation Materials
Shi Yiwen1,2,3, Chen Xiangrong1,2,3,4, Meng Fanbo1,2,3, Hong Zelin1,2,3, Zhu Hanshan1,2,3
1. College of Electrical Engineering Zhejiang University Hangzhou 310027 China; 2. ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 China; 3. Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices Hangzhou Global Scientific and Technological Innovation Center Zhejiang University Hangzhou 311200 China; 4. International Research Center for Advanced Electrical Engineering International Campus Zhejiang University Haining 314400 China
Abstract:This paper studies the effects of voltage stabilizer and its content of 4-n-propylbenzoic acid on the insulation properties of the cross-linked polyethylene (XLPE) material used for 500kV HVDC cable. The XLPE specimens with voltage stabilizer content of 0%, 1%, 3% and 5% were prepared by solution blending and hot pressing methods. Then the space charge, DC conductivity, DC breakdown, dielectric properties, mechanical properties, and differential scanning calorimetry were tested on the specimens. The results show that the addition of the voltage stabilizer can inhibit the accumulation of space charge, reduce the DC conductivity and improve the lifetime index of insulation. In contrast, the DC breakdown strength and lifetime index of the XLPE specimen with 1% voltage stabilizer content are the highest. With the increase of voltage stabilizer content, the DC breakdown strength of the specimen first increases and then decreases, while the relative permittivity and the dielectric loss gradually increase, and the effect of frequency on the relative dielectric constant of the material is noticeable. Moreover, the mechanical properties and crystallinity of the specimens show the opposite trend. Quantum chemical calculations show that compared with XLPE, the voltage stabilizer has positive electron affinity energy and a narrower molecular band gap. At the same time, the polarity of voltage stabilizer molecules is large, which is conducive to introducingtraps inside the specimen after addition, thus effectively improving the electrical properties of the cable insulation material.
石逸雯, 陈向荣, 孟繁博, 洪泽林, 朱汉山. 电压稳定剂及其含量对高压直流用500kVXLPE电缆材料绝缘性能的影响[J]. 电工技术学报, 2022, 37(22): 5851-5861.
Shi Yiwen, Chen Xiangrong, Meng Fanbo, Hong Zelin, Zhu Hanshan. The Effect of Voltage Stabilizer and Its Content on the Insulation Properties of 500kV HVDC Cable Insulation Materials. Transactions of China Electrotechnical Society, 2022, 37(22): 5851-5861.
[1] 迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(14): 3758-3770. Chi Yongning, Liang Wei, Zhang Zhankui, et al.An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770. [2] 孟沛彧, 向往, 邸世民, 等. 大规模海上风电多电压等级混合级联直流送出系统[J]. 电力系统自动化, 2021, 45(21): 120-128. Meng Peiyu, Xiang Wang, Di Shimin, et al.Hybrid cascaded HVDC transmission system with multiple voltage levels for large-scale offshore wind power[J]. Automation of Electric Power Systems, 2021, 45(21): 120-128. [3] 康佳, 姜磊, 高景晖, 等. 漂浮式风电平台动态海缆用绝缘材料性能研究[J]. 高压电器, 2022, 58(1): 12-17. Kang Jia, Jiang Lei, Gao Jinghui, et al.Study on properties of insulating materials for dynamic submarine cable of floating wind power platform[J]. High Voltage Apparatus, 2022, 58(1): 12-17. [4] 钟力生, 任海洋, 曹亮, 等. 挤包绝缘高压直流电缆的发展[J]. 高电压技术, 2017, 43(11): 3473-3489. Zhong Lisheng, Ren Haiyang, Cao Liang, et al.Development of high voltage direct current extruded cables[J]. High Voltage Engineering, 2017, 43(11): 3473-3489. [5] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J]. 电工技术学报, 2019, 34(1): 179-191. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J]. Transactions of China Electro- technical Society, 2019, 34(1): 179-191. [6] Gao Yahan, Huang Xingyi, Min D, et al.Recyclable dielectric polymer nanocomposites with voltage stabi- lizer interface: toward new generation of high voltage direct current cable insulation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 513-525. [7] 赵健康, 赵鹏, 陈铮铮, 等. 高压直流电缆绝缘材料研究进展评述[J]. 高电压技术, 2017, 43(11): 3490-3503. Zhao Jiankang, Zhao Peng, Chen Zhengzheng, et al.Review on progress of HVDC cables insulation materials[J]. High Voltage Engineering, 2017, 43(11): 3490-3503. [8] 李春阳, 韩宝忠, 张城城, 等. 电压稳定剂提高PE/XLPE绝缘耐电性能研究综述[J]. 中国电机工程学报, 2017, 37(16): 4850-4864, 4911. Li Chunyang, Han Baozhong, Zhang Chengcheng, et al.Review of voltage stabilizer improving the electrical strength of PE/XLPE[J]. Proceedings of the CSEE, 2017, 37(16): 4850-4864, 4911. [9] Yamano Y.Roles of polycyclic compounds in increasing breakdown strength of LDPE film[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(4): 773-781. [10] Wei Zuojun, Liu Haiyan, Yu Linwei, et al.Delocalized aromatic molecules with matched electron-donating and electron-withdrawing groups enhancing insulating performance of polyethylene blends[J]. Journal of Applied Polymer Science, 2020, 137(39): 49185. [11] Shi Y W, Chen X R, Meng F B, et al.Enhancement of insulation properties of cross-linked polyethylene utilizing aromatic voltage stabilizers with electron- withdrawing and electron-donating groups[J]. ACS Applied Polymer Materials, 2022, 4(2): 1422-1430. [12] Sun Xiaopeng, Yang Fanghong, Yao Zhanhai.Influence of ungrafted monomers in graft copolymers on electrical insulating properties of polyethylene[J]. Industrial & Engineering Chemistry Research, 2020, 59(37): 16112-16121. [13] Zhang Chong, Zha Junwei, Yan Hongda, et al.High improvement in trap level density and direct current breakdown strength of block polypropylene by doping with a β-nucleating agent[J]. Applied Physics Letters, 2018, 112(9): 091902. [14] 陈向荣, 玉林威, 刘海燕, 等. 电压稳定剂改善聚乙烯共混材料绝缘性能的研究[J]. 西安交通大学学报, 2019, 53(12): 87-96. Chen Xiangrong, Yu Linwei, Liu Haiyan, et al.Insulating property enhancement of polyethylene blends by voltage stabilizers[J]. Journal of Xi’an Jiaotong University, 2019, 53(12): 87-96. [15] Yamano Y.Control of electrical tree at initiation stage in LDPE by mixed addition of Al2O3 nano- particle and azobenzoic compound[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2014, 21(1): 209-216. [16] Wang X, He H Q, Tu D M, et al.Dielectric properties and crystalline morphology of low density polyethy- lene blended with metallocene catalyzed polyethy- lene[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2): 319-326. [17] 刘霞, 于钦学, 刘明昊, 等. 160kV直流XLPE电缆绝缘的直流E-t特性[J]. 高电压技术, 2019, 45(1): 130-135. Liu Xia, Yu Qinxue, Liu Minghao, et al.DC E-t characteristics of 160kV DC XLPE cable insulation[J]. High Voltage Engineering, 2019, 45(1): 130-135. [18] Hedir A, Moudoud M, Lamrous O, et al.Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation[J]. Journal of Applied Polymer Science, 2020, 137(16): 48575. [19] 李维康, 张翀, 闫轰达, 等. 高压直流电缆用交联聚乙烯绝缘材料交联特性及机理[J]. 高电压技术, 2017, 43(11): 3599-3606. Li Weikang, Zhang Chong, Yan Hongda, et al.Crosslinking characteristic and mechanism of cross- linked polyethylene insulating materials used for high voltage direct current cables[J]. High Voltage Engin- eering, 2017, 43(11): 3599-3606. [20] Zhu Xi, Yin Yi, Wu Jiandong, et al.Study on aging characteristics of XLPE cable insulation based on quantum chemical calculation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2020, 27(6): 1942-1950. [21] 李进, 赵仁勇, 杜伯学, 等. 量子化学计算在高压直流绝缘领域中的应用进展[J]. 高电压技术, 2020, 46(3): 772-781. Li Jin, Zhao Renyong, Du Boxue, et al.Application progress of quantum chemical calculation in the field of HVDC insulation[J]. High Voltage Engineering, 2020, 46(3): 772-781. [22] 吴旭辉, 吴广宁, 杨雁, 等. 等离子体改性纳米粒子对聚酰亚胺复合薄膜陷阱特性影响[J]. 中国电机工程学报, 2018, 38(11): 3410-3418. Wu Xuhui, Wu Guangning, Yang Yan, et al.Influence of nanoparticle plasma modification on trap properties of polyimide composite films[J]. Proceedings of the CSEE, 2018, 38(11): 3410-3418. [23] 付一峰, 陈俊岐, 赵洪, 等. 交联聚乙烯接枝氯乙酸烯丙酯直流介电性能[J]. 电工技术学报, 2018, 33(18): 4372-4381. Fu Yifeng, Chen Junqi, Zhao Hong, et al.DC dielectric properties of crosslinking polyethylene grafted chloroacetic acid allyl ester[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4372-4381. [24] Takada T, Tohmine T, Tanaka Y, et al.Space charge accumulation in double-layer dielectric systems— measurement methods and quantum chemical calcula- tions[J]. IEEE Electrical Insulation Magazine, 2019, 35(5): 36-46. [25] Su J, Du B, Han T, et al.Multistep and multiscale electron trapping for high-efficiency modulation of electrical degradation in polymer dielectrics[J]. Journal of Physical Chemistry C, 2019, 123(12): 7045-7053. [26] 白晓慧, 郑文文, 邵长金, 等. 金属及非金属元素掺杂(TiO2)12量子环的电子性质的密度泛函理论研究[J]. 人工晶体学报, 2015, 44(7): 1832-1837, 1860. Bai Xiaohui, Zheng Wenwen, Shao Changjin, et al.Electronic property studies of metal and non-metal elements doped (TiO2)12 quantum ring by density functional theory[J]. Journal of Synthetic Crystals, 2015, 44(7): 1832-1837, 1860. [27] Chen Xiangrong, Yu Linwei, Dai Chao, et al.Enhancement of insulating properties of polyethylene blends by delocalization type voltage stabilizers[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(6): 2041-2049. [28] 李国倡, 王家兴, 魏艳慧, 等. 高压直流电缆附件XLPE/SIR材料特性及界面电荷积聚对电场分布的影响[J]. 电工技术学报, 2021, 36(14): 3081-3089. Li Guochang, Wang Jiaxing, Wei Yanhui, et al.Effect of material properties of XLPE/SIR and interface charge accumulation on electric field distribution of HVDC cable accessory[J]. Transactions of China Electrotechnical Society, 2021, 36(14): 3081-3089. [29] 查俊伟, 田娅娅, 刘雪洁, 等. 本征型耐高温聚酰亚胺储能电介质研究进展[J]. 高电压技术, 2021, 47(5): 1759-1770. Zha Junwei, Tian Yaya, Liu Xuejie, et al.Research progress of intrinsic high temperature resistant polyimide for energy storage dielectrics[J]. High Voltage Engineering, 2021, 47(5): 1759-1770.