Modeling and Design of Magnetic Blowing System for High Voltage Direct Current Relay
Su Weilong1, Xu Zhihong1,2
1. School of Electrical Engineering and Automation Fuzhou University Fuzhou 350108 China; 2. Fujian Key Laboratory of New Energy Generation and Power Conversion Fuzhou 350108 China
Abstract:Due to the compact structure of the HVDC relay contact system, it is difficult to use grids or gas producing materials to improve the breaking performance of the contacts. The arc movement speed can be accelerated by the external magnetic field of the magnetic blowing system, which improves the arc extinguishing ability. As a key part of the magnetic blowing system, the permanent magnet has an uneven distribution of external magnetic induction, and its size has a great influence on the size and distribution of the magnetic field, which causes certain difficulties for the design of the magnetic blowing system. In response to this problem, this paper established a 3D finite element model of the magnetic blowing system, focusing on the analysis of the impact of the permanent magnet size on its external magnetic field, and established a relevant mathematical model. It also analyzed the characteristics of the external magnetic field distribution of the permanent magnet, and obtained the relationship between the uniformity of the external magnetic field distribution and the size of the permanent magnet. Finally, combined with the characteristics of the HVDC relay's breaking arc, this paper designed the size, magnetization direction and installation position of the permanent magnet in the magnetic blowing system by considering the force and stagnation time of the arc. It lays a theoretical foundation for improving the contact breaking performance of HVDC relays.
苏伟龙, 许志红. 高压直流继电器磁吹系统的建模与设计[J]. 电工技术学报, 2022, 37(6): 1583-1594.
Su Weilong, Xu Zhihong. Modeling and Design of Magnetic Blowing System for High Voltage Direct Current Relay. Transactions of China Electrotechnical Society, 2022, 37(6): 1583-1594.
[1] 翟国富, 崔行磊, 杨文英. 电磁继电器产品及研究技术发展综述[J]. 电器与能效管理技术, 2016(2): 1-8. Zhai Guofu, Cui Xinglei, Yang Wenying.Overview for development of research and technologies of elec-tromagnetic relays[J]. Electrical & Energy Management Technology, 2016(2): 1-8. [2] 翟国富, 薄凯, 周学, 等. 直流大功率继电器电弧研究综述[J]. 电工技术学报, 2017, 32(22): 251-263. Zhai Guofu, Bo Kai, Zhou Xue, et al.Investigation on breaking arc in DC high-power relays: a review[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 251-263. [3] 翟国富, 周学, 杨文英. 纵向与横向磁场作用下分断直流感性负载时的电弧特性实验[J]. 电工技术学报, 2011, 26(1): 68-74. Zhai Guofu, Zhou Xue, Yang Wenying.Experiment on DC inductive arcs driven by axial and transverse magnetic fields[J]. Transactions of China Electro-technical Society, 2011, 26(1): 68-74. [4] 崔彦青. 横向磁场下直流真空断路器中电弧特性及其仿真研究[D]. 天津: 河北工业大学, 2017. [5] Lindmayer M.Simulation of switching arcs under transverse magnetic fields for DC interruption[J]. IEEE Transactions on Plasma Science, 2016, 44(2): 187-194. [6] Rau S, Lee W.DC arc model based on 3-D DC arc simulation[J]. IEEE Transactions on Industry Appli-cations, 2016, 52(6): 5255-5261. [7] Miyagawa H, Sekikawa J. Effect of magnetic blow-out and air flow on break arcs occurring between silver electrical contacts with copper runners[J]. The Institute of Electronics, Information and Communi-cation Engineers, 2017, E100.C(9): 709-715. [8] Bo Kai, Zhou Xue, Zhai Guofu, et al.Simulation on dwell stage of arcs in bridge type contacts for high-voltage DC relay[C]//2016 IEEE 62nd Holm Con-ference on Electrical Contacts (Holm), Clearwater Beach, FL, 2016: 163-166. [9] Bo Kai, Zhou Xue, Zhai Guofu.Investigation on arc dwell and restriking characteristics in DC high-power relay[J]. IEEE Transactions on Plasma Science, 2017, 45(6): 1032-1042. [10] 何永周. 永磁体外部磁场的不均匀性研究[J]. 物理学报, 2013, 62(8): 145-151. He Yongzhou.Study on the non-uniformity of the external magnetic field of permanent magnets[J]. Acta Physica Sinica, 2013, 62(8): 145-151. [11] 刘宏娟. 矩形永磁体三维磁场空间分布研究[D]. 北京: 北京工业大学, 2006. [12] 苟晓凡, 杨勇, 郑晓静. 矩形永磁体磁场分布的解析表达式[J]. 应用数学和力学, 2004, 25(3): 271-278. Gou Xiaofan, Yang Yong, Zheng Xiaojing.Analytical expression of magnetic field distribution of rectangular permanent magnet[J]. Applied Mathematics and Mechanics, 2004, 25(3): 271-278. [13] 梁慧敏, 由佳欣, 罗福彪, 等. 基于磁力线划分的开路条形非线性永磁体分布参数模型[J]. 中国电机工程学报, 2014, 34(9): 1429-1435. Liang Huimin, You Jiaxin, Luo Fubiao, et al.A distributed parameter model of open circuit nonlinear permanent magnet bars based on magnetic field lines[J]. Proceedings of the CSEE, 2014, 34(9): 1429-1435. [14] 胡伯平. 稀土永磁材料的现状与发展趋势[J]. 磁性材料及器件, 2014, 45(2): 66-77, 80. Hu Boping.The status quo and development trend of rare earth permanent magnet materials[J]. Journal of Magnetic Materials and Devices, 2014, 45(2): 66-77, 80. [15] 伍玉鑫, 王阳明, 杨泽锋, 等. 电弧作用下浸铜碳材料烧蚀过程的数值模拟[J]. 电工技术学报, 2019, 34(6): 1119-1126. Wu Yuxin, Wang Yangming, Yang Zefeng, et al.Numerical simulation of ablation process of copper-impregnated carbon material under arc action[J]. Transactions of the China Electrotechnical Society, 2019, 34(6): 1119-1126. [16] 付思, 曹云东, 李静, 等. 触头分离瞬间真空金属蒸气电弧形成过程的仿真[J]. 电工技术学报, 2020, 35(13): 2922-2931. Fu Si, Cao Yundong, Li Jing, et al.Simulation researches on vacuum metal vapor arc formation at the initial moment of contact parting[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2922-2931. [17] 蒋原, 李擎, 崔家瑞, 等. 纵向磁场下中频真空电弧的重燃现象分析[J]. 电工技术学报, 2020, 35(18): 3860-3868. Jiang Yuan, Li Qing, Cui Jiarui, et al.Reignition of intermediate frequency vacuum arc at axial magnetic field[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3860-3868. [18] 熊德智, 陈向群, 杨杰, 等. 微型断路器弧失效分析及性能优化设计[J]. 电工技术学报, 2019, 34(11): 2333-2341. Xiong Dezhi, Chen Xiangqun, Yang Jie, et al.Arc extinguishing failure analysis and performance optimization design of miniature circuit breaker[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2333-2341. [19] 钟昱铭, 熊兰, 杨子康, 等. 计及铜蒸气介质的小电流直流电弧仿真与实验[J]. 电工技术学报, 2020, 35(13): 2913-2921. Zhong Yuming, Xiong Lan, Yang Zikang, et al.Numerical simulation and experiment of small current DC arc considering copper vapor medium[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2913-2921. [20] 王福军. 计算流体动力学分析CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004. [21] Swierczynski B, Gonzalea J J, Teulet P, et al.Advances in low voltage circuit breaker modeling[J]. Journal of Physics D: Applied Physics, 2004, 37(4): 595-609. [22] 曹启纯, 刘向军. 高压直流继电器电弧运动仿真分析与实验研究[J]. 电工技术学报, 2019, 34(22): 4699-4707. Cao Qichun, Liu Xiangjun.Simulation analysis and experimental study on arc motion of high-voltage DC relays[J]. Transactions of China Electrotechnical Society, 2019, 34(22): 4699-4707. [23] 刘佳. 探究永磁体磁性与放置点对电弧电动力的影响[J]. 电器与能效管理技术, 2018(16): 18-20, 31. Liu Jia.Investigating the influence of magnetism and laying position of permanent magnet on arc's elec-trodynamic force[J]. Electrical & Energy Manage-ment Technology, 2018(16): 18-20, 31.