Abstract:In this paper, the principal component analysis (PCA) method was used to fuse multiple feature quantities to determine the comprehensive evaluation index according to the principal component, and the positive and negative ideal values are obtained by combining test data. Therefore, an improved traditional technique for order preference by similarity to ideal solution (TOPSIS) model was proposed, which can overcome the randomness caused by human factors when setting the weight matrix and obtaining the positive and negative ideal values. The effectiveness of the proposed model was verified by the example of evaluating the aging state of insulation paper for converter transformers under the combined vibration and temperature conditions. Firstly, combined with the accelerated mechanical-thermal aging experiments of the insulation paper, the mechanical and electrical properties of the insulation paper and the furfural content, the improved TOPSIS method fuses the multi-feature quantities that characterize the aging of insulation paper, such as degree of polymerization, tensile strength, furfural content and dielectric dissipation factor at characteristic frequencies. Secondly, the quantitative expression between the comprehensive evaluation index and the tensile strength of insulation paper was obtained, and the corresponding tensile strengths when the insulation performance was good and severely deteriorated were taken as the positive and negative ideal values, respectively. Finally, combined with the tensile strength loss rate of insulation paper, the principle of setting the proximity interval was given, and the quantitative evaluation of the aging state of insulation paper was realized. The results show that the improved TOPSIS method not only includes the multiple feature quantities that can characterize the aging state of insulation paper, but also overcomes the shortcomings of the traditional TOPSIS method, which can be used to accurately evaluate the aging state of insulation paper under the complex mechanical-thermal condition.
姜雅男, 于永进, 李长云. 基于改进TOPSIS模型的绝缘纸机-热老化状态评估方法[J]. 电工技术学报, 2022, 37(6): 1572-1582.
Jiang Ya’nan, Yu Yongjin, Li Changyun. Evaluation Method of Insulation Paper Deterioration Status with Mechanical-Thermal Synergy Based on Improved TOPSIS Model. Transactions of China Electrotechnical Society, 2022, 37(6): 1572-1582.
[1] 邹阳, 林超群, 叶荣, 等. 油浸纸水分含量与混联等效模型极化支路极点的定量关系[J]. 电工技术学报, 2021, 36(20): 4359-4370. Zou Yang, Lin Chaoqun, Ye Rong, et al.Quantitative relationship between the moisture content of oil-impregnated paper and the poles of the polarization branch of the hybrid equivalent model[J]. Transa-ctions of China Electrotechnical Society, 2021, 36(20): 4359-4370. [2] 邹阳, 何倩玲, 蔡金锭, 等. 基于组合赋权-双基点法的变压器油纸绝缘状态综合评估[J]. 电工技术学报, 2019, 34(20): 4400-4408. Zou Yang, He Qianling, Cai Jinding, et al.Com-prehensive evaluation of transformer oil-paper state based on combined weight-double base point method[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4400-4408. [3] 范贤浩, 刘捷丰, 张镱议, 等. 融合频域介电谱及支持向量机的变压器油浸纸绝缘老化状态评估[J]. 电工技术学报, 2021, 36(10): 2161-2168. Fan Xianhao, Liu Jiefeng, Zhang Yiyi, et al.Aging evaluation of transformer oil-immersed insulation combining frequency domain spectroscopy and support vector machine[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2161-2168. [4] 杨峰, 唐超, 周渠, 等. 基于等效电路的油纸绝缘系统受潮状态分析[J]. 电工技术学报, 2020, 35(21): 4586-4595. Yang Feng, Tang Chao, Zhou Qu, et al.Analyzing the moisture state of oil-paper insulation system using an equivalent circuital model[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4586-4595. [5] 崔彦捷, 汲胜昌, 祝令瑜, 等. 机械应力对油浸纸板局部放电影响[J]. 电工技术学报, 2021, 36(12): 2659-2666. Cui Yanjie, Ji Shengchang, Zhu Lingyu, et al.Effect of mechanical stress on partial discharge of oil-impregnated pressboard[J]. Transactions of China Electrotechnical Society, 2021, 36(12): 2659-2666. [6] 周远翔, 戴超, 黄猛, 等. 电老化过程中直流电场对油纸绝缘空间电荷特性的影响[J]. 高电压技术, 2016, 42(12): 3861-3867. Zhou Yuanxiang, Dai Chao, Huang Meng, et al.Effect of DC electric field on space charge characteristics of oil-paper insulation in electrical aging process[J]. High Voltage Engineering, 2016, 42(12): 3861-3867. [7] 李长云, 王铮. 机-热效应对换流变绝缘纸机械性能劣化影响的实验研究[J]. 中国电机工程学报, 2019, 39(2): 612-620, 658. Li Changyun, Wang Zheng.Experiments research on the deterioration of inverter transformer insulation paper mechanical properties with mechanical-thermal synergy[J]. Proceedings of the CSEE, 2019, 39(2): 612-620, 658. [8] 李长云, 郝爱东, 娄禹. 直流偏磁条件下电力变压器振动特性研究进展[J]. 电力自动化设备, 2018, 38(6): 215-223. Li Changyun, Hao Aidong, Lou Yu.Status and progress of research on transformer vibration characteristics with DC bias[J]. Electric Power Automation Equipment, 2018, 38(6): 215-223. [9] 李长云, 刘亚魁. 直流偏磁条件下变压器铁芯磁化特性的Jiles-Atherton修正模型[J]. 电工技术学报, 2017, 32(19): 192-200. Li Changyun, Liu Yakui.Modified Jiles-Atherton model of transformer iron core magnetization characteristics with DC bias[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 192-200. [10] Tefera K, Tripathy P, Adda R.Electromagnetic and mechanical stress analysis of wind-driven synchronous reluctance generator[J]. CES Transactions on Elec-trical Machines and Systems, 2019, 3(1):107-114. [11] 李长云, 王铮. 机-热协同作用下绝缘纸机械性能的劣化机理[J]. 电工技术学报, 2018, 33(21): 5090-5097. Li Changyun, Wang Zheng.The degradation mechanism of insulation paper mechanical properties with mechanical-thermal synergy[J]. Transactions of China Electrotechnical Society, 2018, 33(21): 5090-5097. [12] 邓映鑫, 杨丽君, 燕飞东, 等. 受潮油纸绝缘的非线性介电响应特性及H-W模型在时-频转换中的应用[J]. 电工技术学报, 2020, 35(21): 4609-4618. Deng Yingxin, Yang Lijun, Yan Feidong, et al.Nonlinear dielectric response characteristics of damp oil-impregnated pressboard insulation and application of H-W model in time-frequency conversion[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4609-4618. [13] 李长云, 郝爱东. 机-热协同老化对纤维素绝缘纸频域介电谱的影响[J]. 电工技术学报, 2019, 34(17): 3705-3712. Li Changyun, Hao Aidong.Influence of the mechanical-thermal aging on the frequency-domain dielectric spectroscopy of cellulose insulation paper[J]. Transa-ctions of China Electrotechnical Society, 2019, 34(17): 3705-3712. [14] Shen Hongtao, Tao Peng, Zhao Pei, et al.Massive power device condition monitoring data feature extraction and clustering analysis using MapReduce and graph model[J]. CES Transactions on Electrical Machines and Systems, 2019, 3(2): 221-230. [15] 黄剑锋, 骆思佳, 冯杰. 融合多参量诊断电力变压器故障的实例分析[J]. 高压电器, 2013, 49(3): 110-114, 121. Huang Jianfeng, Luo Sijia, Feng Jie.Case study on fault diagnosis with multi-parameter for power trans-former[J]. High Voltage Apparatus, 2013, 49(3): 110-114, 121. [16] 袁海满, 吴广宁. 基于多信息融合的变压器故障诊断[J]. 高压电器, 2018, 54(9): 103-110. Yuan Haiman, Wu Guangning.Fault diagnosis of transformer based on multi-information fusion[J]. High Voltage Apparatus, 2018, 54(9): 103-110. [17] 肖伊, 李庆民. 基于多特征参量的油纸绝缘老化状态定量表征方法[J]. 绝缘材料, 2019, 52(8): 54-59. Xiao Yi, Li Qingmin.Quantitative characterization method of oil-paper insulation ageing condition based on multi-characteristic parameters[J]. Insulation Materials, 2019, 52(8): 54-59. [18] 胡元潮, 阮江军, 杜志叶, 等. 基于TOPSIS法的变电站一次设备智能化评估[J]. 电力自动化设备, 2012, 32(12): 22-27. Hu Yuanchao, Ruan Jiangjun, Du Zhiye, et al.Evaluation of substation primary equipment intel-lectualization based on TOPSIS[J]. Electric Power Automation Equipment, 2012, 32(12): 22-27. [19] 詹怀宇. 纤维化学与物理[M]. 北京: 科学出版社, 2005. [20] 赵彤, 石雷, 张远涛, 等. 基于分子模拟的绝缘纸高温裂解过程水分产生及其破坏作用研究[J]. 中国电机工程学报, 2017, 37(15): 4548-4567. Zhao Tong, Shi Lei, Zhang Yuantao, et al.Study on H2O formation during the pyrolysis of insulating paper and its destructive effect based on molecular simulation[J]. Proceedings of the CSEE, 2017, 37(15): 4548-4567. [21] Hill D J T, Darveniza M, Saha T, et al. A study of degradation of cellulosic insulation materials in a power transformer. part 2: tensile strength of cellulose insulation paper[J]. Polymer Degradation and Stability, 1995, 49(3): 429-435. [22] Ding Hongzhi, Wang Zhongdong.On the degradation evolution equations of cellulose[J]. Cellulose, 2008, 15(1): 205-224. [23] Lin Yuandi, Yang Lijun, Liao Ruijin, et al.Effect of oil replacement on furfural analysis and aging assessment of power transformers[J]. IEEE Transa-ctions on Dielectrics and Electrical Insulation, 2015, 22(5): 2611-2619. [24] 廖瑞金, 冯大伟, 李金忠, 等. 绝缘油中糠醛稳定性的影响因素[J]. 高电压技术, 2018, 44(6): 1729-1734. Liao Ruijin, Feng Dawei, Li Jinzhong, et al.Influential factors on stability of furfural in insulating oil[J]. High Voltage Engineering, 2018, 44(6): 1729-1734. [25] Xi Xiaoguang, Wang Haoming, Wang Wei, et al.The study on the relationship of frequency domain spectroscopy of oil-paper insulation with degree of polymerization and tensile strength[C]//IEEE Inter-national Conference on the Properties and Appli-cations of Dielectric Materials, Xi'an, 2018: 801-804. [26] 张宁, 蔡金锭. 基于层次分析和逼近理想解法的绝缘状态评估[J]. 仪器仪表学报, 2018, 39(11): 35-42. Zhang Ning, Cai Jinding. Evaluation of insulation state based on the combination of analytical hierarchy process and TOPSIS[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 35-42. [27] 董坚, 陈春芳, 温磊, 等. 具有四参数区间偏好序的TOPSIS群决策方法[J]. 统计与决策, 2016(19): 42-44. Dong Jian, Chen Chunfang, Wen Lei, et al.TOPSIS group decision making method with four parameters interval preference ordinal[J]. Statistics and Decision making, 2016(19): 42-44.