Characteristics and Development Stage Recognition of Air-Gap Discharge within Oil-Paper Insulation Considering Effect of Cavity Size
Chen Weigen1, Long Zhenze1,2, Xie Bo1, Ling Yun3, Chen Xi4
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. State Grid Sichuan Electric Power Company Research Institute Chengdu 610072 China; 3. Shenzhen Power Supply Company Shenzhen 518001 China; 4. State Grid Chongqing Electric Power Company Research Institute Chongqing 401120 China
Abstract:Oil-paper insulation is commonly used in power transformer. Air-gap discharge, especially the discharge in large cavity will threaten the oil-paper insulation. In order to com- prehensively evaluate the risk of air-gap discharge, five types of cavity configurations were manufactured, and the effects of their cavity sizes on partial discharge (PD) were studied. Then PD signals throughout the accelerated deterioration experiments were analyzed. In addition, based on Clustering-Random Forests, PD development stages of large and small cavities were recognized. Results show that, compared to small cavity PD, large cavity PD possesses lower inception field, higher charge magnitude and higher inception phase, moreover when air-gap PD comes to the last stage, positive PD in large cavity fails to expand to the negative half cycle and vice versa. Lower surface electron emission rate and lower reverse field in the large cavity are the main reasons of higher inception phase. Through clustering, PD development stages for large and small cavity models are both divided into three stages, i.e. initial discharge stage, weak discharge stage and outbreak discharge stage. For the development stage recognition, the accuracy of Random Forests is 93.15%, showing better performance than those of RBF Neural Network and Kernel Based Support Vector Machine. Experiment results provide reference for more precise evaluation of the air-gap PD development stage.
陈伟根, 龙震泽, 谢波, 凌云, 陈曦. 不同气隙尺寸的油纸绝缘气隙放电特征及发展阶段识别[J]. 电工技术学报, 2016, 31(10): 49-58.
Chen Weigen, Long Zhenze, Xie Bo, Ling Yun, Chen Xi. Characteristics and Development Stage Recognition of Air-Gap Discharge within Oil-Paper Insulation Considering Effect of Cavity Size. Transactions of China Electrotechnical Society, 2016, 31(10): 49-58.
[1] 阮羚, 李成华, 宿磊, 等. 基于奇异值分解的局部放电模式识别方法[J]. 电工技术学报, 2015, 30(18): 223-228. Ruan ling, Li Chenghua, Su Lei, et al. Pattern recognition for partial discharging using singular value decomposition[J]. Transactions of China Electro- technical Society, 2015, 30(18): 223-228. [2] 李军浩, 司文荣, 姚秀, 等. 油纸绝缘内部气隙缺陷电劣化过程中局部放电的测量与模拟[J]. 中国电机工程学报, 2009, (31): 128-134. Li Junhao, Si Wenrong, Yao Xiu, et al. Measurement and simulation of partial discharge in discvoid of oil-pressboard insulation with electrical degradation process[J]. Proceedings of the CSEE, 2009, 29(31): 128-134. [3] 陈养春, 魏金清, 李成榕, 等. 局部放电作用下变压器匝间油纸绝缘加速劣化规律[J]. 电工技术学报, 2015, 30(18): 203-212. Chen Yangchun, Wei Jinqing, Li Chengrong, et al. Development rules of accelerated degradation of oil-paper insulation between turns in transformer windings induced by partial discharge[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(18): 203-212. [4] 杨丽君, 廖瑞金, 孙才新, 等. 油纸绝缘的局部放电特征量分析及危险等级评估方法研究[J]. 中国电机工程学报, 2011, 31(1): 123-130. Yang Lijun, Liao Ruijin, Sun Caixin, et al. Partial discharge characteristics and risk assessment method for oil-paper[J]. Proceedings of the CSEE, 2011, 31(1): 123-130. [5] Yazici B. Statistical pattern analysis of partial discharge measurements for quality assessment of insulation systems in high-voltage electrical machin- ery[J]. IEEE Transactions on Industry Applications, 2004, 40(6): 1579-1594. [6] Baker P C, Stephen B, Judd M D. Compositional modeling of partial discharge pulse spectral characteristics[J]. IEEE Transactions on Instrument- ation and Measurement, 2013, 62(7): 1909-1916. [7] 尚海昆, 苑津莎, 王瑜, 等. 基于交叉小波变换和相关系数矩阵的局部放电特征提取[J]. 电工技术学报, 2014, 29(4): 274-281. Shang Haikun, Yuan Jinsha, Wang Yu, et al. Feature extraction for partial discharge based on cross- wavelet transform and correlation coefficient matrix[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 274-281. [8] Runde M, Hegerberg R, Magnusson N, et al. Cavity formation in mass-impregnated HVDC subsea cables-mechanisms and critical parameters[J]. IEEE Electrical Insulation Magazine, 2014, 30(2): 22-33. [9] 司文荣, 李军浩, 袁鹏, 等. 气体绝缘组合电器多局部放电源的检测与识别[J]. 中国电机工程学报, 2009, 29(16): 119-126. Si Wenrong, Li Junhao, Yuan Peng, et al. Detection and identification techniques for multi-PD source in GIS[J]. Proceedings of the CSEE, 2009, 29(16): 119-126. [10] 张士文, 张峰, 王子骏, 等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报, 2014, 29(6): 290-295. Zhang Shiwen Zhang Feng, Wang Zijun, et al. Series arc fault identification method based on energy produced by wavelet transformation and neural network[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 290-295. [11] 满玉岩, 高文胜, 高凯, 等. 发电机局部放电的统计特征识别[J]. 电工技术学报, 2006, 21(4): 41-45. Man Yuyan, Gao Wensheng, Gao Kai, et al. Statictical recognition of discharge patterns in power generator[J]. Transactions of China Electrotechnical Society, 2006, 21(4): 41-45. [12] 唐炬, 林俊亦, 卓然, 等. 基于支持向量数据描述的局部放电类型识别[J]. 高电压技术, 2013, 39(5): 1046-1053. Tang Ju, Lin Junyi, Zhuo Ran, et al. Partial discharge type recognition based on support vector data description[J]. High Voltage Engineering, 2013, 39(5): 1046-1053. [13] D149—09 standard test method for dielectric break- down voltage and dielectric strength of solid electrical insulating materials at commercial power frequencies[S]. 2013. [14] Schifani R, Candela R, Romano P. On PD mechanisms at high temperature in voids included in an epoxy resin[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(4): 589-597. [15] 潘浩, 殷庆铎, 高文胜. 固体绝缘中气隙尺寸对局部放电过程的影响[J]. 高电压技术, 2008, 34(3): 458-461. Pan Hao, Yin Qingduo, Gao Wensheng. Influence of void dimensions on partial discharge in solid insula- tion[J]. High Voltage Engineering, 2008, 34(3): 458-461. [16] Kai W, Ijichi T, Kato T, et al. Contribution of surface conductivity to the current forms of partial discharges in voids[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(6): 1116-1124. [17] Niemeyer L. A generalized approach to partial discharge modeling[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1995, 2(4): 510-528. [18] Illias H A, Chen G, Lewin P L. Partial discharge within a spherical cavity in a dielectric material as a function of cavity size and material temperature[J]. IET Science, Measurement & Technology, 2012, 6(2): 52-62. [19] Gulski E, Kreuger F H. Computer-aided recognition of discharge sources[J]. IEEE Transactions on Elec- trical Insulation, 1992, 27(1): 82-92. [20] 杨丽君. 基于局部放电特征量多元统计分析的油纸绝缘老化研究[D]. 重庆: 重庆大学, 2004. [21] 陈伟根, 蔚超, 凌云, 等. 油纸绝缘气隙放电特征信息提取及其过程划分[J]. 电工技术学报, 2011, 26(4): 7-12. Chen Weigen, Wei Chao, Ling Yun, et al. Feature information extraction of air-gap discharge in oil-paper insulation and its process partition[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 7-12. [22] 杨虎,刘琼荪,钟波. 数理统计[M]. 北京: 高等教育出版社, 2004. [23] 夏长亮, 文德, 范娟, 等. 基于RBF神经网络的无刷直流电机无位置传感器控制[J]. 电工技术学报, 2002, 17(3): 26-29. Xia Changliang, Wen De, Fan Juan, et al. Based on RBF neural network position sensorless control for brush DC motors[J]. Transactions of China Electro- technical Society, 2002, 17(3): 26-29. [24] 安金龙, 王正欧, 马振平. 一种新的支持向量机多类分类方法[J]. 信息与控制, 2004, 33(3): 262-267. An Jinlong, Wang Zhengou, Ma Zhenping. A new SVM multiclass classification method[J]. Information and Control, 2004, 33(3): 262-267. [25] 方匡南, 吴见彬, 朱建平, 等. 随机森林方法研究综述[J]. 统计与信息论坛, 2011, 26(3): 32-38. Fang Kuangnan, Wu Jianbin, Zhu Jianping, et al. A review of technologies on random forests[J]. Statistics & Information Forum, 2011, 26(3): 32-38. [26] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.