Abstract:To obtain the relationship between state of charge of lithium-ion battery and ultrasonic transmission features at low temperature, experiments and theory analysis on ultrasonic detection of the state of charge of cylindrically wound lithium-ion batteries were carried out. A fixing device was developed to improve the sensing stability and sensitivity. The feature extraction algorithm was proposed to extract ultrasonic signal amplitude (SA) and ultrasonic time-of-flight (TOF). The research on SOC detection by ultrasonic transmission method at low temperature was carried out. The maximum usable capacity of lithium-ion batteries was obtained. The results show that, the TOF is more accurate than the SA in state of charge detection of the lithium-ion battery at low temperature. The effects of low temperature on the elastic modulus, quality, and length of lithium-ion battery anode materials were investigated, and the quantified equations for the state of charge and ultrasonic transmission flight time of lithium-ion battery at low temperature were established. The coefficient of determination of the fitting between the quantization equation and the test data is 0.9668. This study can provide a reference for the accurate detection of lithium-ion battery SOC at low temperature.
吴立峰, 刘昊, 林仲钦, 徐策, 马国明. 低温环境下锂离子电池荷电状态与超声透射飞行时间的关系研究[J]. 电工技术学报, 2022, 37(21): 5617-5626.
Wu Lifeng, Liu Hao, Lin Zhongqin, Xu Ce, Ma Guoming. Relationship between State of Charge of Lithium-Ion Battery and Ultrasonic Transmission Flight Time at Low Temperature. Transactions of China Electrotechnical Society, 2022, 37(21): 5617-5626.
[1] 黄云辉. 锂离子电池: 20世纪最重要的发明之一[J]. 科学通报, 2019, 64(36): 3811-3816. Huang Yunhui.Lithium-ion battery: one of the most important inventions in the 20th century[J]. Chinese Science Bulletin, 2019, 64(36): 3811-3816. [2] Duan Jian, Tang Xuan, Dai Haifeng, et al.Building safe lithium-ion batteries for electric vehicles: a review[J]. Electrochemical Energy Reviews, 2020, 3(1): 1-42. [3] Alipour M, Ziebert C, Conte F V, et al.A review on temperature-dependent electrochemical properties, aging, and performance of lithium-ion cells[J]. Batteries, 2020, 6(3): 35. [4] Luo Maji, Guo Yazhou, Kang Jianqiang, et al.Ternary-material lithium-ion battery SOC estimation under various ambient temperature[J]. Ionics, 2018, 24(7): 1907-1917. [5] Lin H P, Chua D, Salomon M, et al.Low-temperature behavior of Li-ion cells[J]. Electrochemical and Solid-State Letters, 2001, 4(6): A71-A73. [6] Berecibar M, Gandiaga I, Villarreal I, et al.Critical review of state of health estimation methods of Li-ion batteries for real applications[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 572-587. [7] 杨若岑, 冬雷, 廖晓钟, 等. 电池剩余容量估算方法综述[J]. 电气技术, 2019, 20(10): 1-5, 57. Yang Ruocen, Dong Lei, Liao Xiaozhong, et al.A review on battery remaining capacity estimation[J]. Electrical Engineering, 2019, 20(10): 1-5, 57. [8] Rodrigues M T F, Babu G, Gullapalli H, et al. A materials perspective on Li-ion batteries at extreme temperatures[J]. Nature Energy, 2017, 2(8): 17108. [9] 李超然, 肖飞, 樊亚翔, 等. 基于卷积神经网络的锂离子电池SOH估算[J]. 电工技术学报, 2020, 35(19): 4106-4119. Li Chaoran, Xiao Fei, Fan Yaxiang, et al.An approach to lithium-ion battery SOH estimation based on convolutional neural network[J]. Transactions of China Electrotechnical Society, 2020, 35(19): 4106-4119. [10] 许守平, 胡娟, 侯朝勇. 储能用锂离子电池动态阻抗模型及其特征参数研究[J]. 电气技术, 2018, 19(8): 90-94. Xu Shouping, Hu Juan, Hou Chaoyong.Study on the dynamic impedance model and characteristic parameters of lithium ion battery for energy storage system[J]. Electrical Engineering, 2018, 19(8): 90-94. [11] 程俊, 曲妍, 李媛, 等. 基于剩余电量估计的电池组充放电均衡策略[J]. 电力系统保护与控制, 2020, 48(3): 122-129. Cheng Jun, Qu Yan, Li Yuan, et al.Charge and discharge equalization strategy for battery packs based on remaining capacity estimation[J]. Power System Protection and Control, 2020, 48(3): 122-129. [12] 焦自权, 范兴明, 张鑫, 等. 基于改进粒子滤波算法的锂离子电池状态跟踪与剩余使用寿命预测方法[J]. 电工技术学报, 2020, 35(18): 3979-3993. Jiao Ziquan, Fan Xingming, Zhang Xin, et al.State tracking and remaining useful life predictive method of Li-ion battery based on improved particle filter algorithm[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3979-3993. [13] 申彩英, 左凯. 基于开路电压法的磷酸铁锂电池SOC估算研究[J]. 电源技术, 2019, 43(11): 1789-1791. Shen Caiying, Zuo Kai.Research on SOC estimation of LiFePO4 batteries based on open circuit voltage method[J]. Chinese Journal of Power Sources, 2019, 43(11): 1789-1791. [14] 杨文荣, 朱赛飞, 陈阳, 等. 基于改进安时积分法估计锂离子电池组SOC[J]. 电源技术, 2018, 42(2): 183-184, 246. Yang Wenrong, Zhu Saifei, Chen Yang, et al.SOC estimation of lithium-ion battery based on improved ampere-hour integral method[J]. Chinese Journal of Power Sources, 2018, 42(2): 183-184, 246. [15] 梁培维, 张彦会. 基于欧姆内阻对锂电池健康状态的估算[J]. 电源技术, 2019, 43(10): 1623-1625, 1704. Liang Peiwei, Zhang Yanhui.Estimation of lithium battery health based on ohmic internal resistance[J]. Chinese Journal of Power Sources, 2019, 43(10): 1623-1625, 1704. [16] 宫明辉, 乌江, 焦朝勇. 基于模糊自适应扩展卡尔曼滤波器的锂电池SOC估算方法[J]. 电工技术学报, 2020, 35(18): 3972-3978. Gong Minghui, Wu Jiang, Jiao Chaoyong.SOC estimation method of lithium battery based on fuzzy adaptive extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2020, 35(18): 3972-3978. [17] 邓哲, 黄震宇, 刘磊, 等. 超声技术在锂离子电池表征中的应用[J]. 储能科学与技术, 2019, 8(6): 1033-1039. Deng Zhe, Huang Zhenyu, Liu Lei, et al.Applications of ultrasound technique in characterization of lithium-ion batteries[J]. Energy Storage Science and Technology, 2019, 8(6): 1033-1039. [18] 马广廷. 超声波用于锂离子电池SOC的预测及内部气体检测的探究[D]. 武汉: 华中科技大学, 2019. [19] Deng Zhe, Huang Zhenyu, Shen Yue, et al.Ultrasonic scanning to observe wetting and “unwetting” in Li-ion pouch cells[J]. Joule, 2020, 4(9): 2017-2029. [20] Sood B, Osterman M, Pecht M.Health monitoring of lithium-ion batteries[C]//2013 IEEE Symposium on Product Compliance Engineering (ISPCE), Austin, TX, USA, 2013: 1-6. [21] Gold L, Bach T, Virsik W, et al.Probing lithium-ion batteries'state-of-charge using ultrasonic transmission-concept and laboratory testing[J]. Journal of Power Sources, 2017, 343: 536-544. [22] Hsieh A G, Bhadra S, Hertzberg B J, et al.Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health[J]. Energy & Environmental Science, 2015, 8(5): 1569-1577. [23] Davies G, Knehr K W, van Tassell B, et al. State of charge and state of health estimation using electrochemical acoustic time of flight analysis[J]. Journal of the Electrochemical Society, 2017, 164(12): A2746-A2755. [24] Robinson J B, Maier M, Alster G, et al.Spatially resolved ultrasound diagnostics of Li-ion battery electrodes[J]. Physical Chemistry Chemical Physics, 2019, 21(12): 6354-6361. [25] 李均浩, 刘文红. 一种改进的非整数自适应时延估计方法[J]. 应用声学, 2019, 38(2): 253-260. Li Junhao, Liu Wenhong.An improved fractional adaptive time delay estimation method[J]. Journal of Applied Acoustics, 2019, 38(2): 253-260. [26] 任元, 邹喆乂, 赵倩, 等. 浅析电解质中离子输运的微观物理图像[J]. 物理学报, 2020, 69(22): 46-62. Ren Yuan, Zou Zheyi, Zhao Qian, et al.Brief overview of microscopic physical image of ion transport in electrolytes[J]. Acta Physica Sinica, 2020, 69(22): 46-62. [27] Chung S H, Such K, Wieczorek W, et al.An analysis of ionic conductivity in polymer electrolytes[J]. Journal of Polymer Science Part B: Polymer Physics, 1994, 32(16): 2733-2741. [28] Albinsson I, Mellander B E, Stevens J R.Ionic conductivity in poly(propylene glycol) complexed with lithium and sodium triflate[J]. The Journal of Chemical Physics, 1992, 96(1): 681-690. [29] Xu Li, Cui Xianbao, Zhang Ying, et al.Measurement and correlation of electrical conductivity of ionic liquid [EMIM][DCA] in propylene carbonate and γ-butyrolactone[J]. Electrochimica Acta, 2015, 174: 900-907. [30] Jaguemont J, Boulon L, Dubé Y.A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures[J]. Applied Energy, 2016, 164: 99-114. [31] Davies G.Characterization of batteries using ultrasound: applications for battery management and structural determination[D]. Princeton: Princeton University, 2018. [32] Zhang S S, Xu K, Jow T R.Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta, 2002, 48(3): 241-246. [33] Lee J H, Kim C.Effective modulus of Si electrodes considering Li concentration, volume expansion, pore, and Poisson's ratio of Li-ion batteries[J]. Journal of Mechanical Science and Technology, 2021, 35(5): 2115-2121. [34] Hu Bin, Zhu Yuhong, Shi Chao.Effect of temperature on solid ultrasonic propagation using finite element method and experiments[C]//2018 IEEE Far East NDT New Technology & Application Forum (FENDT), Xiamen, China, 2018: 107-111. [35] 王祥, 康健强, 谭祖宪. 基于电化学衰退模型研究锂离子电池SEI反应[J]. 化学工程与技术, 2018, 8(2): 137-150. Wang Xiang, Kang Jianqiang, Tan Zuxian.Study on SEI reaction of lithium-ion batteries based on the electrochemical degradation model[J]. Hans Journal of Chemical Engineering and Technology, 2018, 8(2): 137-150.