Study on Online Identification Method of Low Frequency Electrochemical Impedance Spectroscopy for Lithium-Ion Battery Based on Step Wave
Sun Bingxiang1, Wang Jiaju2, Su Xiaojia1, Zhang Weige1, Zhao Xinze1
1. National Active Distribution Network Technology Research Center Beijing Jiaotong University Beijing 100044 China; 2. Yinchuan Power Supply Company State Grid Ningxia Power Co. Ltd Yinchuan 750011 China
Abstract:Electrochemical impedance spectroscopy (EIS) is an external characterization of the internal performance parameters of lithium-ion battery. How to get rid of the dependence on proprietary equipment for online identification of EIS, especially low-frequency EIS identification is of great significance for accurately estimating battery status. At present, the existing methods of online identification of EIS in engineering mainly obtain the corresponding sine wave by Fourier decomposition of the square wave. However, there are differences between the harmonic amplitudes obtained after decomposition and the fundamental amplitudes, and the identification results have relatively large errors in the low frequency band of EIS. Therefore, in order to further improve the identification accuracy of the EIS low frequency band, this paper takes NCM lithium-ion battery as the research object in the framework of the communication protocols between battery management system (BMS) and bi-directional charging-discharging device. Further, an online identification method for lithium-ion batteries low-frequency EIS based on step waves is proposed via the transformation relationship of step signals and sine signals, the frequency range is selected to be below 2 Hz. In order to better analyze the EIS low-frequency identification method based on step wave proposed in this paper, three groups of experiments are mainly designed. The feasibility of the step wave EIS (STEIS) identification method, the accuracy of the STEIS low-frequency identification results with different sampling frequencies, and the advantages of the EIS test method compared with the square wave Fourier decomposition are mainly analyzed. The test frequency is 10 mHz~2 Hz, and the temperature is all carried out at 25℃. The equipment and components used in the experiment include Bio-Logic VMP-300 electrochemical workstation for electrochemical impedance spectroscopy, high and low temperature test chamber for controlling ambient temperature, power battery under test, and computer for control and data storage. The experimental results show that the ten-step step wave can realize the accurate fitting of the sine wave, and the goodness of fit is 0.96, which can realize the online identification of the EIS of the lithium-ion battery. From the analysis of the identification results, it can be found that at different SOC points, as long as the sampling frequency is high enough, the EIS test in a wider frequency domain can be realized. When the sampling frequency is 50 Hz, high-precision STEIS results can be obtained in the test frequency range of 10 mHz~2 Hz, and the average relative error is within 1.12%. Comparing the STEIS method with the square wave Fourier decomposition method, the average relative error in the measurement frequency domain is 6.4% smaller than that of the square wave. It can be seen that the STEIS method is significantly better than the square wave. The method proposed in this paper can get rid of the dependence on the sine wave equipment. Within the framework of the existing communication protocol, it can be realized by controlling the bidirectional charging and discharging equipment through the battery management system, which provides an important method support for the online active evaluation of the operating status of the battery.
孙丙香, 王家驹, 苏晓佳, 张维戈, 赵鑫泽. 基于阶梯波的锂离子电池电化学阻抗谱低频段在线辨识方法[J]. 电工技术学报, 2023, 38(11): 3064-3072.
Sun Bingxiang, Wang Jiaju, Su Xiaojia, Zhang Weige, Zhao Xinze. Study on Online Identification Method of Low Frequency Electrochemical Impedance Spectroscopy for Lithium-Ion Battery Based on Step Wave. Transactions of China Electrotechnical Society, 2023, 38(11): 3064-3072.
[1] 王榘, 熊瑞, 穆浩. 温度和老化意识融合驱动的电动车辆锂离子动力电池电量和容量协同估计[J]. 电工技术学报, 2020, 35(23): 4980-4987. Wang Ju, Xiong Rui, Mu Hao.Co-estimation of lithium-ion battery state-of-charge and capacity through the temperature and aging awareness model for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4980-4987. [2] 赵伟, 闵婕, 李章溢, 等. 基于一致性模型的梯次利用锂离子电池组能量利用率估计方法[J]. 电工技术学报, 2021, 36(10): 2190-2198. Zhao Wei, Min Jie, Li Zhangyi, et al.Energy utilization efficiency estimation method for second-use lithium-ion battery packs based on a battery consistency model[J]. Transactions of China Electrotechnical Society, 2021, 36(10): 2190-2198. [3] 冯飞, 逯仁贵, 朱春波. 一种锂离子电池低温SOC估计算法[J]. 电工技术学报, 2014, 29(7): 53-58. Feng Fei, Lu Rengui, Zhu Chunbo.State of charge estimation of Li-ion battery at low temperature[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 53-58. [4] 刘伟龙, 王丽芳, 王立业. 基于电动汽车工况识别预测的锂离子电池SOE估计[J]. 电工技术学报, 2018, 33(1): 17-25. Liu Weilong, Wang Lifang, Wang Liye.Estimation of state-of-energy for electric vehicles based on the identification and prediction of driving condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 17-25. [5] Dai Haifeng, Yu Chenchen, Wei Xuezhe, et al.State of charge estimation for lithium-ion pouch batteries based on stress measurement[J]. Energy, 2017, 129: 16-27. [6] Hu Xiaosong, Xu Le, Lin Xianke, et al.Battery lifetime prognostics[J]. Joule, 2020, 4(2): 310-346. [7] Xiong Rui, Sun Wanzhou, Yu Quanqing, et al.Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles[J]. Applied Energy, 2020, 279: 115855. [8] 吴磊, 吕桃林, 陈启忠, 等. 电化学阻抗谱测量与应用研究综述[J]. 电源技术, 2021, 45(9): 1227-1230. Wu Lei, Lü Taolin, Chen Qizhong, et al.Review of measurement and application of electrochemical impedance spectroscopy[J]. Chinese Journal of Power Sources, 2021, 45(9): 1227-1230. [9] 庄全超, 杨梓, 张蕾, 等. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791. Zhuang Quanchao, Yang Zi, Zhang Lei, et al.Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion batteries[J]. Progress in Chemistry, 2020, 32(6): 761-791. [10] 黄秋安, 李伟恒, 汤哲鹏, 等. 电化学阻抗谱基础[J]. 自然杂志, 2020, 42(1): 12-26. Huang Qiuan, Li Weiheng, Tang Zhepeng, et al.Fundamentals of electrochemical impedance spectroscopy[J]. Chinese Journal of Nature, 2020, 42(1): 12-26. [11] 韩慧颖, 冯素蕊, 陶钰禧. 电化学阻抗谱的原理及其应用[J]. 缔客世界, 2020, 6(6): 121. Han Huiying, Feng Surui, Tao Yuxi.Principle and application of electrochemical impedance spectroscopy[J]. Maker world, 2020, 6(6): 121. [12] 王盼. 电化学阻抗谱在锂离子电池中的应用[J]. 电源技术, 2020, 44(12): 1847-1850, 1854. Wang Pan.Application of electrochemical impedance spectroscopy in lithium ion batteries[J]. Chinese Journal of Power Sources, 2020, 44(12): 1847-1850, 1854. [13] 冷晓伟, 戴作强, 郑莉莉, 等. 锂离子电池电化学阻抗谱研究综述[J]. 电源技术, 2018, 42(11): 1749-1752. Leng Xiaowei, Dai Zuoqiang, Zheng Lili, et al.Review on electrochemical impedance spectroscopy of lithium-ion batteries[J]. Chinese Journal of Power Sources, 2018, 42(11): 1749-1752. [14] 龚敏明, 卞景季, 孙丙香, 等. 锂离子电池分数阶等效电路模型低频参数演变规律研究[J]. 重庆理工大学学报(自然科学), 2020, 34(2): 6-14. Gong Minming, Bian Jingji, Sun Bingxiang, et al.Study on parameter evolution of fractional order equivalent circuit model for Li-ion batteries in low frequency area[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(2): 6-14. [15] 孙丙香, 刘佳, 韩智强, 等. 不同区间衰退路径下锂离子电池的性能相关性及温度适用性分析[J]. 电工技术学报, 2020, 35(9): 2063-2073. Sun Bingxiang, Liu Jia, Han Zhiqiang, et al.Performance correlation and temperature applicability of Li-ion batteries under different range degradation paths[J]. Transactions of China Electrotechnical Society, 2020, 35(9): 2063-2073. [16] 戴海峰, 王冬晨, 姜波. 基于电化学阻抗谱的电池荷电状态估计[J]. 同济大学学报(自然科学版), 2019, 47(S1): 95-98. Dai Haifeng, Wang Dongchen, Jiang Bo.Estimation of battery state of charge based on electrochemical impedance spectroscopy[J]. Journal of Tongji University (Natural Science), 2019, 47(S1): 95-98. [17] 吴健, 尹泽, 李豪, 等. 基于分数阶理论的锂离子电池高频等效电路模型[J]. 电工技术学报, 2021, 36(18): 3902-3910. Wu Jian, Yin Ze, Li Hao, et al.High-frequency equivalent circuit model of lithium-ion battery based on fractional order theory[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3902-3910. [18] 李晓宇, 朱春波, 魏国, 等. 基于分数阶联合卡尔曼滤波的磷酸铁锂电池简化阻抗谱模型参数在线估计[J]. 电工技术学报, 2016, 31(24): 141-149. Li Xiaoyu, Zhu Chunbo, Wei Guo, et al.Online parameter estimation of a simplified impedance spectroscopy model based on the fractional joint Kalman filter for LiFePO4 battery[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 141-149. [19] 张彩萍, 姜久春, 张维戈, 等. 梯次利用锂离子电池电化学阻抗模型及特性参数分析[J]. 电力系统自动化, 2013, 37(1): 54-58. Zhang Caiping, Jiang Jiuchun, Zhang Weige, et al.Characterization of electrochemical impedance equivalent model and parameters for Li-ion batteries echelon use[J]. Automation of Electric Power Systems, 2013, 37(1): 54-58. [20] 张利中, 穆苗苗, 赵书奇, 等. 再利用退役锂动力电池的性能评估[J]. 电源技术, 2018, 42(7): 964-967. Zhang Lizhong, Mu Miaomiao, Zhao Shuqi, et al.Performance assessments of retired lithium-ion power batteries for reuse[J]. Chinese Journal of Power Sources, 2018, 42(7): 964-967. [21] 胡国荣, 彭清远, 彭忠东, 等. 两种方法制备的磷酸铁锂/石墨烯复合材料的性能对比[J]. 无机化学学报, 2015, 31(6): 1153-1158. Hu Guorong, Peng Qingyuan, Peng Zhongdong, et al.Comparison on properties of lithium iron phosphate/graphene composite prepared by two methods[J]. Chinese Journal of Inorganic Chemistry, 2015, 31(6): 1153-1158. [22] 沈迪, 阮海军, 姜久春, 等. 一种锂离子电池的EIS快速测量方法: CN106970266A[P].2017-07-21. [23] 陆祖良, 杨雁, 黄璐, 等. 阶梯波性质的进一步探讨: 阶梯波研究之一[J]. 计量学报, 2018, 39(6): 759-767. Lu Zuliang, Yang Yan, Huang Lu, et al.Further discussion on characteristics of staircase waveform[J]. Acta Metrologica Sinica, 2018, 39(6): 759-767.