Abstract:To explore the degradation performance of proton exchange membrane fuel cell (PEMFC) stack under dynamic locomotive conditions, polarization curve, equivalent circuit model (ECM) method, and distribution of relaxation time (DRT) method are combined to analyze the performance of PEMFC. For the 5kW stack, the polarization curves and electrochemical impedance spectroscopy (EIS) of the 1st, 20th, and 40th cells after 0h, 110h, 220h, and 330h of locomotive operation are measured. The third-order equivalent circuit model of PEMFC is established, and the internal changes of PEMFC are analyzed according to the model parameters. The DRT corresponding to EIS is calculated to explain the changes of the polarization process of PEMFC according to different peaks. The results show that the main losses of different cells occur in the oxygen reduction reaction process and mass transfer process, while the degradation trends of different cells are inconsistent under dynamic conditions. Cell 1 at the stack inlet degrades the fastest during 110~220h. The degradation rate of cell 20 increases with time. Cell 40 at stack outlet degrades the fastest during 220~330h. Due to cell 40 is not fully activated at 0h, its performance is improved during 0~110h.
[1] 陈维荣, 钱清泉, 李奇. 燃料电池混合动力列车的研究现状与发展趋势[J]. 西南交通大学学报, 2009, 44(1): 1-6. Chen Weirong, QianQingquan, Li Qi. Investigation status and development trend of hybrid power train based on fuel cell[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 1-6. [2] 肖丽, 高峰, 侯淑萍, 等. 新能源汽车驱动系统速度传感器故障检测与容错控制法[J]. 电工技术学报, 2020, 35(24): 5075-5086. Xiao Li, Gao Feng, Hou Shuping, et al.Speed sensor fault detection and tolerant control for new energy vehicle drive system[J]. Transactions of China Elec- trotechnical Society, 2020, 35(24): 5075-5086. [3] 潘光胜, 顾伟, 张会岩, 等. 面向高比例可再生能源消纳的电氢能源系统[J]. 电力系统自动化, 2020, 44(23): 1-10. Pan Guangsheng, Gu Wei, Zhang Huiyan, et al.Electricity and hydrogen energy system towards accomodation of high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(23): 1-10. [4] Chen Huicui, Pei Pucheng, Song Mancun.Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells[J]. Applied Energy, 2015, 142: 154-163. [5] 李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. Li Zheng, Zhang Rui, Sun Hexu, et al.Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electro- technical Society, 2021, 36(3): 446-462. [6] 戚志东, 裴进, 胡迪. 基于分数阶PID控制的质子交换膜燃料电池前级功率变换器[J]. 电工技术学报, 2019, 34(增刊1): 235-243. Qi Zhidong, Pei Jin, Hu Di.Pre-stage power converter of proton exchange membrane fuel cell based on fractional order PID controller[J]. Transactions of China Electrotechnical Society, 2019, 34(S1): 235-243. [7] Lin R, Li B, Hou Y P, et al.Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell[J]. Inter- national Journal of Hydrogen Energy, 2009, 34(5): 2369-2376. [8] Schmittinger W, Vahidi A.A review of the main parameters influencing long-term performance and durability of PEM fuel cells[J]. Journal of Power Sources, 2008, 180(1): 1-14. [9] Meyer Q, Ronaszegi K, Robinson J B, et al.Com- bined Current and temperature mapping in an air- cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions[J]. Journal of Power Sources, 2015, 297: 315-322. [10] Mezzi R, Yousfi-Steiner N, Péra M C, et al.An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[J]. Applied Energy, 2021, 283: 116297. [11] Tian Xinlong, Luo Junming, Nan Haoxiong, et al.Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2016, 138(5): 1575-1583. [12] Galeano C, Meier J C, Peinecke V, et al.Toward highly stable electrocatalysts via nanoparticle pore confinement[J]. Journal of the American Chemical Society, 2012, 134(50): 20457-20465. [13] Jayasayee K, Veen J A R V, Manivasagam T G, et al. Oxygen reduction reaction (ORR) activity and dura- bility of carbon supported PtM (Co, Ni, Cu) alloys: influence of particle size and non-noble metals[J]. Applied Catalysis B: Environmental, 2012, 111/112: 515-526. [14] Liu Yongfeng, Fan Lei, Pei Pucheng, et al.Asympto- tic analysis for the inlet relative humidity effects on the performance of proton exchange membrane fuel cell[J]. Applied Energy, 2018, 213: 573-584. [15] 张雪霞, 蒋宇, 黄平, 等. 质子交换膜燃料电池容错控制方法综述[J]. 中国电机工程学报, 2021, 41(4): 1431-1444. Zhang Xuexia, Jiang Yu, Huang Ping, et al.A review of fault-tolerant control methodology on proton exchange membrane fuel cell[J]. Proceedings of the CSEE, 2021, 41(4): 1431-1444. [16] Rezaei Niya S M, Hoorfar M. Study of proton exchange membrane fuel cells using electrochemical impedance spectroscopy technique-a review[J]. Journal of Power Sources, 2013, 240: 281-293. [17] 吴健, 尹泽, 李豪, 等. 基于分数阶理论的锂离子电池高频等效电路模型[J]. 电工技术学报, 2021, 36(18): 3902-3910. Wu Jian, Yin Ze, Li Hao, et al.High-frequency equivalent circuit model of lithium-ion battery based on fractional order theory[J]. Transactions of China Electrotechnical Society, 2021, 36(18): 3902-3910. [18] Fouquet N, Doulet C, Nouillant C, et al.Model based PEM fuel cell state-of-health monitoring via AC impedance measurements[J]. Journal of Power Sources, 2006, 159(2): 905-913. [19] Kim T, Oh H, Kim H, et al.An online-applicable model for predicting health degradation of PEM fuel cells with root cause analysis[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7094-7103. [20] Rezaei Niya S M, Hoorfar M. Process modeling of electrodes in proton exchange membrane fuel cells[J]. Journal of Electroanalytical Chemistry, 2015, 747: 112-122. [21] 曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2002. [22] 王佳, 黄秋安, 李伟恒, 等. 电化学阻抗谱弛豫时间分布基础[J]. 电化学, 2020, 26(5): 607-627. Wang Jia, Huang Qiuan, Li Weiheng, et al.Funda- mentals of distribution of relaxation times for elec- trochemical impedance spectroscopy[J]. Journal of Electrochemistry, 2020, 26(5): 607-627. [23] 袁浩, 戴海峰, 杜润本, 等. 质子交换膜燃料电池电化学阻抗谱弛豫时间分布研究[J]. 机械工程学报, 2020, 56(22): 120-130. Yuan Hao, Dai Haifeng, Du Runben, et al.Dis- tribution of relaxation times analysis of proton exchange membrane fuel cell electrochemical impedance spectra[J]. Journal of Mechanical Engineering, 2020, 56(22): 120-130. [24] Schichlein H, Müller A, Voigts M, et al.Decon- volution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells[J]. Journal of Applied Elec- trochemistry, 2002, 32: 875-882. [25] Weiß A, Schindler S, Galbiati S, et al.Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra[J]. Electrochimica Acta, 2017, 230: 391-398. [26] Heinzmann M, Weber A, Ivers-Tiffée E.Advanced impedance study of polymer electrolyte membrane single cells by means of distribution of relaxation times[J]. Journal of Power Sources, 2018, 402: 24-33. [27] Dhirde A M, Dale N V, Salehfar H, et al.Equivalent electric circuit modeling and performance analysis of a PEM fuel cell stack using impedance spectroscopy[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 778-786. [28] Yuan Xiaozi, Wang Haijiang, Sun J C, et al.AC impedance technique in PEM fuel cell diagnosis-a review[J]. International Journal of Hydrogen Energy, 2007, 32(17): 4365-4380. [29] Wan Tinghei, Saccoccio M, Chen Chi, et al.Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRT tools[J]. Electrochimica Acta, 2015, 184: 483-499. [30] Liu Yuxiu, Murphy M W, Baker D R, et al.Proton conduction and oxygen reduction kinetics in PEM fuel cell cathodes: effects of ionomer-to-carbon ratio and relative humidity[J]. Journal of the Electro- chemical Society, 2009, 156(8): B970.