[1] Bacon F.Fuel cells: will they soon become a major source of electrical energy?[J]. Nature, 1960,186(5):589-592.
[2] Mench MM.Fuel cell engines[M]: Hoboken: John Wiley & Sons, 2008.
[3] 胡腾,许烈,李永东,等.混合电动汽车多电平车载变换器的研究[J].电工技术学报,2015, 30(14):261-268.
Hu Teng, Xu Lie, Li Yongdong, et al.Research of multilevel converters on HEV[J]. Transactions of China Electrotechnical Society,2015, 30(14):261-268.
[4] 邱琰辉,陈道炼,江加辉.多绕组同时供电直流变换器型多输入逆变器[J].电工技术学报,2017, 32(6):181-190.
QiuYanhui, Chen Daolian, Jiang Jiahui. Multi-winding simultaneously-supplying DC-DC converter mode multi-input inverter[J]. Transactions of China Electrotechnical Society,2017, 32(6):181-190.
[5] 魏立明,吕雪莹.固体氧化物燃料电池发电系统模型建立及逆变器仿真研究[J].电力系统保护与控制,2016, 44(24):37-43.
Wei Liming, LüXueying. Solid oxide fuel cell power generation system model and study on inverter simulation[J]. Power System Protection and Control, 2016, 44(24):37-43.
[6] LuoYueqi, GuoQian, Du Qing, et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013,224(1):99-114.
[7] Li Xianguo.Principles of fuel cells[M]. New York: Taylor & Francis, 2006.
[8] Spiegel C.Designing and building fuel cells[M]. New York: McGraw-Hill, 2007.
[9] Jiao K, Alaefour IE, Karimi G, et al.Cold start characteristics of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2011,36(18):11832-11845.
[10] Jiao K, Alaefour IE, Karimi G, et al.Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes[J]. Electrochimica Acta, 2011,56(8):2967-2982.
[11] GeShanhai, Wang Chaoyang. In situ imaging of liquid water and ice formation in an operating pefc during cold start[J]. Electrochemical and Solid-State Letters, 2006, 9(1):A499-A503.
[12] GeShanhai, Wang Chaoyang. Characteristics of subzero startup and water/ice formation on the catalyst layer in a polymer electrolyte fuel cell[J]. Electrochimica Acta, 2007, 52(14):4825-4835.
[13] Oberholzer P, Boillat P, Siegrist R, et al.Cold-start of a PEFC visualized with high resolution dynamic in-plane neutron imaging[J]. Journal of the Electrochemical Society, 2012, 159(2):B235-B245.
[14] Santamaria A, Tang HY, Park JW, et al.3D neutron tomography of a polymer electrolyte membrane fuel cell under sub-zero conditions[J]. International Journal of Hydrogen Energy, 2012, 37(14):10836-10843.
[15] Mishler J, Wang Y, Mukherjee PP, et al.Subfreezing operation of polymer electrolyte fuel cells: ice formation and cell performance loss[J]. Electrochimica Acta, 2012, 65(8):127-133.
[16] Plazanet M, Sacchetti F, Petrillo C, et al.Water in a polymeric electrolyte membrane: sorption/desorption and freezing phenomena[J]. Journal of Membrane Science, 2014, 453(1):419-424.
[17] Mayrhuber I, Marone F, Stampanoni M, et al.Fast X-ray tomographic microscopy: investigating mechanisms of performance drop during freeze starts of polymer electrolyte fuel cells[J]. ChemElectroChem, 2015, 2(10): 1551-1559.
[18] Kim SG, Lee SJ.Tomographic analysis of porosity variation in gas diffusion layer under freeze-thaw cycles[J]. International Journal of Hydrogen Energy, 2012, 37(1):566-574.
[19] Wang Chaoyang.Fundamental models for fuel cell engineering[J]. Chemical Reviews, 2004, 104(10):4727-4266.
[20] 彭跃进,张国瑞,王勇,等.阴、阳极加湿对质子交换膜燃料电池性能影响的差异性[J].电工技术学报,2017, 32(4):196-203.
PengYuejin, Zhang Guorui, Wang Yong, et al. Differences on the influences of humidity of cathod and anode on the performance of proton exchange membrane fuel cell[J]. Transactions of China Electrotechnical Society,2017, 32(4):196-203.
[21] Zhou Yibo, LuoYueqi, Yu Shuhai, et al. Modeling of cold start processes and performance optimization for proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2014, 247(2):738-748.
[22] Ishikawa Y, Shiozawa M, Kondo M, et al.Theoretical analysis of supercooled states of water generated below the freezing point in a PEFC[J]. International Journal of Heat and Mass Transfer, 2014, 74(5): 215-227.
[23] Gwak G, Ko J, Ju H.Numerical investigation of cold-start behavior of polymer-electrolyte fuel-cells from subzero to normal operating temperatures - effects of cell boundary and operating conditions[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21927-21937.
[24] Kulikovsky AA.Analytical modelling of fuel cells[M]: Amsterdam: Elsevier, 2010.
[25] Oszcipok M, Zedda M, Riemann D, et al.Low temperature operation and influence parameters on the cold start ability of portable PEMFCs[J]. Journal of Power Sources, 2006, 154(2):404-411.
[26] Kim SI, Lee NW, Kim YS, et al.Effective purge method with addition of hydrogen on the cathode side for cold start in PEM fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(26):11357-11369.
[27] Sun Shucheng, Yu Hongmei, HouJunbo, et al. Catalytic hydrogen/oxygen reaction assisted the proton exchange membrane fuel cell (PEMFC) startup at subzero temperature[J]. Journal of Power Sources, 2008, 177(1):137-141.
[28] GuoQian, LuoYueqi, Jiao K. Modeling of assisted cold start processes with anode catalytic hydrogen-oxygen reaction in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2013, 38(2):1004-1015.
[29] Ertl G. Reactions at surfaces: from atoms to complexity (Nobel Lecture)[EB/OL].[2017-3-22] http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2007/ertl_lecture.pdf. 2007.
[30] Sachs C, Hildebrand M, Volkening S, et al.Spatiotemporal self-organization in a surface reaction: from the atomic to the mesoscopic scale[J]. Science, 2001, 293(5535):1635-1638.
[31] LuoYueqi, Jia Bin, Jiao Kui, et al. Catalytic hydrogen-oxygen reaction in anode and cathode for cold start of proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(32):10293-10307. |