电工技术学报  2021, Vol. 36 Issue (5): 996-1005    DOI: 10.19595/j.cnki.1000-6753.tces.200023
电工理论 |
带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法
谢文超1, 赵延明1,2, 方紫微1, 刘树立1
1.湖南科技大学信息与电气工程学院 湘潭 411201;
2.风电机组运行数据挖掘与利用技术湖南省工程研究中心(湖南科技大学) 湘潭 411201
Variable Forgetting Factor Recursive Least Squales Based Parameter Identification Method for the Equivalent Circuit Model of the Supercapacitor Cell Module
Xie Wenchao1, Zhao Yanming1,2, Fang Ziwei1, Liu Shuli1
1. School of Information and Electrical Engineering Hunan University of Science and Technology Xiangtan 411201 China;
2. School of Engineering Research Center of Hunan Province for the Mining and Utilization of Wind Turbines Operation Data Hunan University of Science and Technology Xiangtan 411201 China
全文: PDF (1400 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为了准确地辨识风力发电机变桨系统后备电源中超级电容模组等效模型的参数,解决由于“数据饱和”现象所产生增益下降过快的缺点,建立超级电容模组三分支等效电路模型,提出一种带可变遗忘因子的递推最小二乘法(RLS)的超级电容模组等效电路模型参数辨识方法,然后建立超级电容模组多方法参数辨识的Simulink仿真模型,并进行仿真与分析。结果表明:该方法充电后静态阶段的综合误差为0.19%,比电路分析法的综合误差降低了6.92%,比分段优化法的综合误差降低了0.09%。整个充放电过程的综合误差为1.22%,比电路分析法降低了9.5%,比分段优化法降低了1.6%。带可变遗忘因子的RLS法比电路分析法和分段优化法拥有更高的辨识精度。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢文超
赵延明
方紫微
刘树立
关键词 超级电容模组等效模型参数辨识可变遗忘因子    
Abstract:In order to accurately identify the parameters of the equivalent model of supercapacitor cell module in the backup power supply of the pitch system of megawatt wind turbine and to solve the problem that the gain decreases too fast due to the data saturation phenomenon, the three-branch equivalent circuit model for the supercapacitor cell module was established, and a parameter identification method of the equivalent circuit model of supercapacitor cell module based on variable forgetting factor recursive least squares(RLS) was proposed in this paper. Then, the Simulink simulation model was also established for the multi-method parameter identification of supercapacitor cell module, and the simulation and analysis were performed. The comprehensive error in the static self-discharge phase of this new method is 0.19%, which is 6.92% and 0.09% lower than circuit analysis method and segmentation optimization method, respectively. Its comprehensive error in the whole process is 1.22%, which is reduced by 9.5% and 1.6% compared with circuit analysis method and segmentation optimization method, respectively. The results show that the new method has higher identification accuracy than circuit analysis method and segmentation optimization method.
Key wordsSupercapacitor cell module    equivalent circuit model    parameter identification    variable forgetting factor   
收稿日期: 2020-01-04     
PACS: TM53  
基金资助:国家重点研发计划(2016YFF0203400)和湖南省研究生创新项目(CX2018B670)资助
通讯作者: 赵延明,男,1973年生,教授,硕士生导师,研究方向为模式识别、风力发电、智能检测与控制、海洋资源开发技术与装备。E-mail:hnust_zhao@aliyun.com   
作者简介: 谢文超,男,1995年生,硕士研究生,研究方向为智能装备与智能检测。E-mail:746220178@qq.com
引用本文:   
谢文超, 赵延明, 方紫微, 刘树立. 带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J]. 电工技术学报, 2021, 36(5): 996-1005. Xie Wenchao, Zhao Yanming, Fang Ziwei, Liu Shuli. Variable Forgetting Factor Recursive Least Squales Based Parameter Identification Method for the Equivalent Circuit Model of the Supercapacitor Cell Module. Transactions of China Electrotechnical Society, 2021, 36(5): 996-1005.
链接本文:  
https://dgjsxb.ces-transaction.com/CN/10.19595/j.cnki.1000-6753.tces.200023          https://dgjsxb.ces-transaction.com/CN/Y2021/V36/I5/996