Research and Analysis of Resonant Wireless Charging System Based on Bilateral LCL Variable Compensation Parameters
Wang Dangshu1, Dong Zhen1, Gu Dongming1, Yi Jiaan1, Luan Zhezhe1, Wang Xinxia2
1. School of Electrical and Control Engineering Xi’an University of Science and Technology Xi’an 710054 China 2. School of Science Xi’an University of Science and Technology Xi’an 710054 China
Abstract:In wireless charging, the switching process from constant current charging mode to constant voltage charging mode is complicated, and the control circuit design is difficult. Therefore, this paper designs a magnetic coupling resonant wireless charging system with variable compensation parameters based on the bilateral LCL topology. The system only needs to switch the additional inductance of the secondary side to complete the smooth conversion from constant current charging to constant voltage charging, thereby eliminating the communication between the original secondary side, reducing the complexity of control circuit design and improving the overall efficiency and stability of the wireless charging system. Firstly, the paper theoretically analyzes of the bilateral LCL variable compensation topology, and derives the conditions for the constant current and constant voltage of the primary side of the system. Then, through the transient analysis of the system constant current to constant voltage switching process, the smooth transition of the switching is realized. Finally, the designed wireless charging system is simulated and experimentally verified. The results show that the system can achieve smooth switching from constant current to constant voltage, and the charging current deviation and charging voltage deviation are 1.65% and 1.8% respectively under the charging conditions of constant current 3A and constant voltage 60V, which meet the battery charging. requirements. In the constant voltage charging mode, the output current waveform of the secondary side resonant network of the system is significantly improved, and the waveform distortion rate is reduced from 15.43% to 1.24%.
王党树, 董振, 古东明, 仪家安, 栾哲哲, 王新霞. 基于双边LCL变补偿参数谐振式无线充电系统的研究与分析[J]. 电工技术学报, 2022, 37(16): 4019-4028.
Wang Dangshu, Dong Zhen, Gu Dongming, Yi Jiaan, Luan Zhezhe, Wang Xinxia. Research and Analysis of Resonant Wireless Charging System Based on Bilateral LCL Variable Compensation Parameters. Transactions of China Electrotechnical Society, 2022, 37(16): 4019-4028.
[1] 薛明, 杨庆新, 章鹏程, 等. 无线电能传输技术应用研究现状与关键问题[J]. 电工技术学报, 2021, 36(8): 1547-1568. Xue Ming, Yang Qingxin, Zhang Pengcheng, et al.Application status and key issues of wireless power transmission technology[J]. Transactions of China Electrotechnical Society, 2021, 36(8): 1547-1568. [2] Hui S Y.Planar wireless charging technology for portable electronic products and qi[J]. Proceedings of the IEEE, 2013, 101(6): 1290-1301. [3] Li Yong, Mai Ruikun, Lin Tianren, et al.A novel WPT system based on dual transmitters and dual receivers for high power applications: analysis, design and implementation[J]. Energies, 2017, 10(2): 174. [4] 王彤辉, 郎宝华. 小功率智能电器的无线供电控制系统[J]. 单片机与嵌入式系统应用, 2019, 19(8): 60-64. Wang Tonghui, Lang Baohua.Wireless power supply control system of low-power intelligent appliances[J]. Microcontrollers & Embedded Systems, 2019, 19(8): 60-64. [5] 蔡春伟, 姜龙云, 陈轶, 等. 基于正交式磁结构及原边功率控制的无人机无线充电系统[J]. 电工技术学报, 2021, 36(17): 3675-3684. Cai Chunwei, Jiang Longyun, Chen Yi, et al.Wireless charging system of unmanned aerial vehicle based on orthogonal magnetic structure and primary power control[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3675-3684. [6] RamRakhyani A K, Mirabbasi S, Chiao M. Design and optimization of resonance-based efficient wire- less power delivery systems for biomedical implants[J]. IEEE Transactions on Biomedical Circuits and Systems, 2011, 5(1): 48-63. [7] 陈海燕, 高晓琳, 杨庆新, 等. 用于人工心脏的经皮传能系统耦合特性及补偿的研究[J]. 电工电能新技术, 2008, 27(2): 59-62. Chen Haiyan, Gao Xiaolin, Yang Qingxin, et al.Study on coupling characteristics and compensation of transcutaneous energy transmission system for artificial heart[J]. Advanced Technology of Electrical Engineering and Energy, 2008, 27(2): 59-62. [8] Yoo J, Yan Long, Lee S, et al.A 5.2mW self- configured wearable body sensor network controller and a 12μW 54.9% efficiency wirelessly powered sensor for continuous health monitoring system[C]// IEEE International Solid-State Circuits Conference, San Francisco, 2009: 290-291. [9] 张献, 任年振, 杨庆新, 等. 电动汽车无线充电自整定控制[J]. 电工技术学报, 2020, 35(23): 4825-4834. Zhang Xian, Ren Nianzhen, Yang Qingxin, et al.Research on self-tuning control strategy of wireless charging for electric vehicles[J]. Transactions of China Electrotechnical Society, 2020, 35(23): 4825-4834. [10] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(上篇)[J]. 电工技术学报, 2020, 35(6): 1153-1165. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅰ[J]. Transactions of China Electrotechnical Society, 2020, 35(6): 1153-1165. [11] 吴理豪, 张波. 电动汽车静态无线充电技术研究综述(下篇)[J]. 电工技术学报, 2020, 35(8): 1662-1678. Wu Lihao, Zhang Bo.Overview of static wireless charging technology for electric vehicles: part Ⅱ[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1662-1678. [12] 赵靖英, 周思诺, 崔玉龙, 等. LCL型磁耦合谐振式无线电能传输系统的设计方法研究与实现[J]. 高电压技术, 2019, 45(1): 228-235. Zhao Jingying, Zhou Sinuo, Cui Yulong, et al.Research and implementation on design method for LCL type magnetically-coupled resonant wireless power transfer system[J]. High Voltage Engineering, 2019, 45(1): 228-235. [13] Qu Xiaohui, Han Hongdou, Wong S C, et al.Hybrid IPT topologies with constant-current or constant- voltage output for battery charging applications[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6329-6337. [14] 张辉, 王换民, 李宁, 等. 电动汽车无线充电混合补偿拓扑电路分析[J]. 电力系统自动化, 2016, 40(16): 71-75. Zhang Hui, Wang Huanmin, Li Ning, et al.Analysis on hybrid compensation topology circuit for wireless charging of electric vehicles[J]. Automation of Electric Power Systems, 2016, 40(16): 71-75. [15] Wang C S, Stielau O H, Covic G A.Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308-1314. [16] Wu H H, Gilchrist A, Sealy K D, et al.A high efficiency 5kW inductive charger for EVs using dual side control[J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 585-595. [17] Fu Minfan, Yin He, Zhu Xinen, et al.Analysis and tracking of optimal load in wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3952-3963. [18] Budhia M, Covic G A, Boys J T.Design and opti- mization of circular magnetic structures for lumped inductive power transfer systems[J]. IEEE Transa- ctions on Power Electronics, 2011, 26(11): 3096-3108. [19] Berger A, Agostinelli M, Vesti S, et al.A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6338-6348. [20] Li Hongchang, Li Jie, Wang Kangping, et al.A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7): 3998-4008. [21] Berger A, Agostinelli M, Vesti S, et al.Phase-shift and amplitude control for an active rectifier to maximize the efficiency and extracted power of a wireless power transfer system[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015: 1620-1624. [22] Zhang Wei, Wong S C, Tse C K, et al.Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 29(1): 191-200. [23] Liu Nan, Habetler T G.Design of a universal indu- ctive charger for multiple electric vehicle models[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6378-6390. [24] Zheng Cong, Lai J S, Chen Rui, et al.High efficiency contactless power transfer system for electric vehicle battery charging application[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 65-74. [25] Nagatsuka Y, Ehara N, Kaneko Y, et al.Compact con- tactless power transfer system for electric vehicles[C]// The 2010 International Power Electronics Conference, Sapporo, 2010: 807-813. [26] Wang C S, Covic G A, Stielau O H.Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148-157. [27] 麦瑞坤, 陈阳, 刘野然. 基于变补偿参数的IPT恒流恒压电池充电研究[J]. 中国电机工程学报, 2016, 36(21): 5816-5821, 6024. Mai Ruikun, Chen Yang, Liu Yeran.Compensation capacitor alteration based IPT battery charging application with constant current and constant voltage control[J]. Proceedings of the CSEE, 2016, 36(21): 5816-5821, 6024. [28] 景玉军, 张冰战. 双LCL谐振型电动汽车无线充电系统研究[J]. 电力电子技术, 2017, 51(7): 89-92. Jing Yujun, Zhang Bingzhan. Research on electric vehicle charging based on double LCL compensation of wireless power transfer system[J]. Power Electro- nics, 2017, 51(7): 89-92. [29] 侯春, 朱旺, 水恒琪, 等. 基于LCL-LC/LCL混合补偿的多电动汽车恒流恒压无线充电系统特性分析[J]. 电工电能新技术, 2018, 37(11): 58-68. Hou Chun, Zhu Wang, Shui Hengqi, et al.Characteri- stic analysis of constant current and voltage wireless charging system for multi-electric vehicles based on LCL-LC/LCL hybrid compensation[J]. Advanced Technology of Electrical Engineering and Energy, 2018, 37(11): 58-68. [30] Zhang Hailong, Chen Yafei, Park S J, et al.A hybrid compensation topology with single switch for battery charging of inductive power transfer systems[J]. IEEE Access, 2019, 7: 171095-171104. [31] Hwang S H, Chen Yafei, Zhang Hailong, et al.Recon- figurable hybrid resonant topology for constant current/voltage wireless power transfer of electric vehicles[J]. Electronics, 2020, 9(8): 1323. [32] 刘帼巾, 白佳航, 崔玉龙, 等. 基于双LCL变补偿参数的磁耦合谐振式无线充电系统研究[J]. 电工技术学报, 2019, 34(8): 1569-1579. Liu Guojin, Bai Jiahang, Cui Yulong, et al.Double- sided LCL compensation alteration based on MCR- WPT charging system[J]. Transactions of China Electrotechnical Society, 2019, 34(8): 1569-1579.