With the development of new energy industry, lithium battery is favored by the market for its superior performance. In order to meet the actual requirement of constant current and constant voltage in the process of lithium battery charging, and to improve the flexibility and safety of charging, this paper proposes a constant voltage/constant current wireless charging system based on T/F variable structure compensation network at the transmitter side. Firstly, the basic output characteristics of S-S compensation network under different power input conditions are analyzed, and the design idea of variable structure compensation network suitable for wireless charging of lithium battery is derived based on the construction mechanism of higher-order compensation network. Secondly, the analysis models of constant voltage and constant current charging mode are established by the equivalent circuit. The basic conditions for realizing the constant output and maintaining the zero phase angle state of the system are derived, and the internal relationship between the system gain and the variable structure compensation network parameters is revealed. At the same time, the control method of switching charging mode by sampling the current of the transmitting side is given. Finally, the variable structure compensation network of the system is verified by simulation and experiment.
谭平安, 廖佳威, 谭廷玉, 宋彬, 邓怡萌. 基于发射侧T/F变结构补偿网络的恒压/恒流无线充电系统[J]. 电工技术学报, 2021, 36(2): 248-257.
Tan Ping'an, Liao Jiawei, Tan Tingyu, Song Bin, Deng Yimeng. Constant Voltage/Constant Current Wireless Charging System Based on T/F Variable Structure Compensation Network of Transmitter-Side. Transactions of China Electrotechnical Society, 2021, 36(2): 248-257.
[1] 张波, 疏许健, 黄润鸿. 感应和谐振无线电能传输技术的发展[J]. 电工技术学报, 2017, 32(18): 3-17.
Zhang Bo, Shu Xujian, Huang Runhong.The deve- lopment of inductive and resonant wireless power transfer technology[J]. Transactions of China Elec- trotechnical Society, 2017, 32(18): 3-17.
[2] Dang Zhigang, Cao Yuan, Abu Qahouq J A. Recon- figurable magnetic resonance-coupled wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6057-6069.
[3] 黄程, 陆益民. 磁谐振无线电能传输系统的频率跟踪失谐控制[J]. 电工技术学报, 2019, 34(15): 3102-3111.
Huang Cheng, Lu Yimin.Frequency tracking detuning control of magnetic resonant wireless power transfer system[J]. Transactions of China Electro- technical Society, 2019, 34(15): 3102-3111.
[4] 卢伟国, 陈伟铭, 李慧荣. 多负载多线圈无线电能传输系统各路输出的恒压特性设计[J]. 电工技术学报, 2019, 34(6): 1137-1147.
Lu Weiguo, Chen Weiming, Li Huirong.Multi-load constant voltage design for multi-load and multi-coil wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2019, 34(6): 1137-1147.
[5] Khaligh A, Li Zhihao.Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the art[J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 2806-2814.
[6] 谭平安, 刘春霞, 叶良伟, 等. 多发射切换式无线电能传输系统耦合特性机理分析[J]. 电工技术学报, 2018, 33(22): 5244-5253.
Tan Ping'an, Liu Chunxia, Ye Liangwei, et al.Coupling mechanism analysis for multi-transmitter switching wireless power transfer system[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(22): 5244-5253.
[7] 丁明, 陈忠, 苏建徽, 等. 可再生能源发电中的电池储能系统综述[J]. 电力系统自动化, 2013, 37(1): 19-25.
Ding Ming, Chen Zhong, Su Jianhui, et al.An overview of battery energy storage system for renewable energy generation[J]. Automation of Elec- tric Power Systems, 2013, 37(1): 19-25.
[8] 韩洪豆. 恒流或恒压式感应无线电能传输特性研究及应用[D]. 南京: 东南大学, 2016.
[9] Vu V, Tran D, Choi W.Implementation of the constant current and constant voltage charge of inductive power transfer systems with the double- sided LCC compensation topology for electric vehicle battery charge applications[J]. IEEE Transa- ctions on Power Electronics, 2018, 33(9): 7398-7410.
[10] 邹爱龙, 王慧贞, 华洁. 基于LCL补偿的多负载移动式感应非接触电能传输系统[J]. 中国电机工程学报, 2014, 34(24): 4000-4006.
Zou Ailong, Wang Huizhen, Hua Jie.Multi-load mobile induction non-contact power transmission system based on LCL compensation[J]. Proceedings of the CSEE, 2014, 34(24): 4000-4006.
[11] Wang Yijie, Yao Yousu, Liu Xiaosheng, et al.S/CLC compensation topology analysis and circular coil design for wireless power transfer[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 496-507.
[12] Song Kai, Li Zhenjie, Jiang Jinhai, et al.Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 8065-8080.
[13] Mai Ruikun, Chen Yang, Li Yong, et al.Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter[J]. IEEE Transactions on Power Electronics, 2017, 32(8): 5897-5906.
[14] 苏玉刚, 谢诗云, 王智慧, 等. 基于F-F/T变结构谐振网络的恒压-恒流型电场耦合电能传输系统[J].电工技术学报, 2019, 34(6): 1127-1136.
Su Yugang, Xie Shiyun, Wang Zhihui, et al.A constant voltage-constant current electric field coupled electric energy transmission system based on FF/T variable structure resonant network[J]. Transa- ctions of China Electrotechnical Society, 2019, 34(6): 1127-1136.
[15] Qu Xiaohui, Han Hongdu, Wong Siuchung, et al.Hybrid IPT topologies with constant current or constant voltage output for battery charging applications[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6329-6337.
[16] 麦瑞坤, 陈阳, 刘野然. 基于变补偿参数的IPT恒流恒压电池充电研究[J]. 中国电机工程学报, 2016, 36(21): 5816-5821, 6024.
Mai Ruikun, Chen Yang, Liu Yeran.Research on IPT constant current and constant voltage battery charging based on variable compensation parameters[J]. Pro- ceedings of the CSEE, 2016, 36(21): 5816-5821, 6024.
[17] 廖佳威. 基于发射端TS/FS变结构补偿网络的恒压/恒流型无线充电系统[D]. 湘潭: 湘潭大学, 2019.
[18] 谢诗云. 具有恒压/恒流输出特性的电场耦合无线电能传输系统拓扑研究[D]. 重庆: 重庆大学, 2017.
[19] Li Yong, Hu Jiefeng, Chen Feibin, et al.A new variable coil structure based IPT system with load independent constant output current or voltage for charging electric bicycles[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8226-8230.