Abstract:Based on the density functional theory (DFT), the dielectric properties of SF6 alternative gas was studied. The molecular ionization energies and average static electronic polarizability affecting the dielectric strength of gas were calculated, the correlation between gas dielectric strength and those two microscopic parameters was obtained by regression analysis. From the results of correlation, it can be seen that the dielectric strength of gas increases with increasing the molecular ionization energy and average static electronic polarizability. Therefore, the further studies on the characteristics of ionization energy and static average molecular polarizability were developed. The analysis found that both parameters are related to the molecular chain length and the type of functional groups contained in the molecules. The results indicate that only from dielectric strength consideration, the fluoride with large molecular weight is expected to replace SF6 as new insulation gas. This paper provides the basis for screening and designing of SF6 potential alternative gas.
林林, 陈庆国, 程嵩, 邱睿, 张聪. 基于密度泛函理论的SF6潜在可替代性气体介电性能分析[J]. 电工技术学报, 2018, 33(18): 4382-4388.
Lin Lin, Chen Qingguo, Cheng Song, Qiu Rui, Zhang Cong. The Analysis of SF6 Potential Alternative Gas Dielectric Strength Based on Density Functional Theory. Transactions of China Electrotechnical Society, 2018, 33(18): 4382-4388.
[1] Christophorou L G, Olthoff J K, Van Brunt R J. Sulfur hexafluoride and the electric power industry[J]. IEEE Electrical Insulation Magazine, 1997, 13(5): 20-24. [2] 李兴文, 赵虎. SF6替代气体的研究进展综述[J]. 高电压技术, 2016, 42(6): 1695-1701. Li Xingwen, Zhao Hu.Review of research progress in SF6 substitute gases[J]. High Voltage Engineering, 2016, 42(6): 1695-1701. [3] 梁方建, 王钰, 王志龙. 六氟化硫气体在电力设备中的应用现状及问题[J]. 绝缘材料, 2010, 43(3): 43-46. Liang Fangjian, Wang Yu, Wang Zhilong, The application situation of SF6 in electrical equipment and some problem[J]. Insulating Materials, 2010, 43(3): 43-46. [4] Qiu Y, Chalmers I D.Effect of surface roughness on breakdown in SF6-N2 and SF6-CO2 gas mixtures[J]. Journal of Physics D: Applied Physics, 1993, 26(19): 28-36. [5] 唐炬, 杨东, 曾福平, 等. 基于分解组分分析的SF6设备绝缘故障诊断方法与技术的研究现状[J]. 电工技术学报, 2016, 31(20): 41-54. Tang Ju, Yang Dong, Zeng Fuping, et al.Research status of SF6 insulation equipment fault diagnosis method and technology based on decomposed com- ponents analysis[J]. Transaction of China Electro- techical Society, 2016, 31(20): 41-54. [6] Malik N H, Qureshi A H.A review of electrical breakdown in mixtures of SF6 and other gases[J]. IEEE Transactions on Electrical Breakdown in Mixtures of SF6 and Other Insulation, 1979, EI14(1): 1-13. [7] Pinheiro M J, Loureiro J.Effective ionization coefficients and electron drift velocities in gas mixtures of SF6 with He, Xe, CO2 and N2 from Boltzmann analysis[J]. Journal of Physics D: Applied Physics, 2002, 35(23): 3077-3084. [8] 陈庆国, 肖登明, 邱毓昌. SF6/N2混合气体的放电特性[J]. 西安交通大学学报, 2001, 35(4): 338-342. Chen Qinguo, Xiao Dengming, Qiu Yuchang.Discharge characteristics of SF6/N2 gas mixtures[J]. Journal-Xi’an Jiaotong University, 2001, 35(4): 338-342. [9] Chervy B, Riad H, Gleizes A.Calculation of the interruption capability of SF6-CF4 and SF6-C2F6 mixtures-Part II: arc decay modeling[J]. IEEE Transactions on Plasma Science, 1996, 24(1): 198-209. [10] Urquijo J de, Basurto E. Measurement of electron drift, diffusion, and effective ionization coefficients in the SF6/CHF3 and SF6/CF4 gas mixtures[J]. Journal of Physics D: Applied Physics, 2003, 36(24): 3132-3137. [11] 李鑫涛, 林莘, 徐建源, 等. SF6/N2混合气体电击穿特性仿真及实验[J]. 电工技术学报, 2017, 32(20): 42-52. Li Xintao, Lin Xin, Xu Jianyuan, et al.Simulations and experiments of dielectric breakdown characteri- stics in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 42-52. [12] Mantilla J D, Gariboldi N, Grob S, et al.Investigation of the insulation performance of a new gas mixture with extremely low GWP[C]//Electrical Insulation Conference (EIC), Philadelphia, USA, 2014: 469-473. [13] Hyrenbach M, Zache S.Alternative insulation gas for medium-voltage switchgear[C]//Petroleum and Chemical Industry Conference Europe (PCIC Europe), Berlin, Germany, 2016: 1-9. [14] Zhao H, Li X W, Lin H.Insulation characteristics of c-C4F8-N2 and CF3I-N2 mixtures as possible sub- stitutes for SF6[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 254-262. [15] Meurice N, Sandré E, Aslanides A, et al.Simple theoretical estimation of the dielectric strength of gases[J]. IEEE Transactions on Dielectrics And Electrical Insulation, 2004, 11(6): 946-948. [16] Brand K P. Dielectric strength, boiling point and toxicity of gases-different aspects of the same basic molecular properties[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(5): 451-456. [17] Rabie M, Dahl D A, Donald S M A, et al. Predictors for gases of high electrical strength[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2013, 20(3): 856-863. [18] Rabie M, Franck C M.Predicting the electric strength of proposed SF6 replacement gases by means of density functional theory[C]//International Symposium on High Voltage Engineering (ISH), Seoul (Korea), 2013: 1381-1386. [19] Raju G G, Gaseous Electronics: Theory and Practice[M]. New York: CRC Press, 2006. [20] 陈季丹, 刘子玉. 电介质物理学[M]. 北京: 机械工业出版社, 1982. [21] Asbury G R, Hill H H.Using different drift gases to change separation factors (α) in ion mobility spectrometry[J]. Analytical Chemistry, 2000, 72(3): 580-584. [22] Atkins P W, Paula J de. Physical Chemistry[M]. 8th Ed. New York: Oxford University Press, 2006. [23] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, M.Millam J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, and Fox D J, Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2010. [24] NIST Chemistry WebBook. Available at: http:// webbook.nist.gov/chemistry and references therein. [25] Vijh A K. Electric strength and molecular properties of gaseous dielectrics[J]. IEEE Transactions on Electrical Insulation, 1977, EI-12(4): 313-315. [26] Vijh A K. Communication on the relative electric strengths and the molecular weights of gases[J]. IEEE Transactions on Electrical Insulation, 1982, EI-17(1) : 84-87. [27] Devins J C. Replacement gases for SF6[J]. IEEE Transactions on Electrical Insulation, 1980, EI-15(2): 81-86. [28] 肖淞, 张晓星, 韩晔飞. 不均匀电场下CF3I/N2混合气体工频击穿特性试验[J]. 电工技术学报, 2016, 31(20): 228-236. Xiao Song, Zhang Xiaoxing, Han Yefei.Experiment on power frequency puncture of CF3I/N2 gas mix- tures in non-uniform electric fields[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 228-236.