Suppression Effect of Nanocomposite Coating on the Adsorption Behavior of Micron-Scale Metal Dust
Wang Jingrui1, Li Qingmin1, Liu Heng1, Wang Jian1, Ni Xiaoru2
1. State Key Lab of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. Maintenance Company Changzhou Branch State Grid Jiangsu Electric Power Co. Ltd Changzhou 213000 China
Abstract:Aluminum dust adsorbed on insulator surface may induce discharge or even flashover in DC GIL. So, suppressing dust’s adsorption is of great significance to improve the reliability of the gas-solid insulation system. In this study, two kinds of nanocomposite coatings doped with different fillers, nano-SiC and montmorillonite (MMT) with nano-TiO2, were designed from the perspective of regulating charge and improving surface adhesion properties. The results show that the effect of MMT-TiO2 nanocomposite coating (MEP) in inhibiting dust adsorption is better than that of SiC nanocomposite coating (SEP). Compared with the uncoated insulator model, the dust distribution range on the surface of MEP6 coating is greatly reduced, and the dust adsorption quality is reduced by 54%. Therefore, MEP6 has the best suppression effect of adsorption. A force analysis model of metal dust is further established to explain the kinetic process of movement and adsorption, and the adsorption process is divided into three stages: lifting, flying and adsorption. Finally, combined with the analysis of surface charge distribution characteristics and intrinsic adhesion characteristics between materials, it is shown that the reason for the prominent effect of MEP6 coating in inhibiting dust adsorption is that it improves charge regulation and anti-adhesion performance at the same time. This work provides a novel idea for improving the insulation strength of the spacer surface by nanocomposite coating to suppress dust adsorption.
王靖瑞, 李庆民, 刘衡, 王健, 倪潇茹. 纳米复合涂层对微米级金属粉尘吸附行为的抑制作用[J]. 电工技术学报, 2022, 37(12): 3172-3182.
Wang Jingrui, Li Qingmin, Liu Heng, Wang Jian, Ni Xiaoru. Suppression Effect of Nanocomposite Coating on the Adsorption Behavior of Micron-Scale Metal Dust. Transactions of China Electrotechnical Society, 2022, 37(12): 3172-3182.
[1] 杨勇, 叶瑞, 王洪川. 气体绝缘封闭金属开关设备与气体绝缘输电线路应力分类及其校核标准比较[J]. 电气技术, 2020, 21(12): 87-97, 101. Yang Yong, Ye Rui, Wang Hongchuan.The stress classification of gas insulated enclosed mental switch-gear and gas insulated transmission lines and com-parison of their verification standard[J]. Electrical Engineering, 2020, 21(12): 87-97, 101. [2] 王渊, 马国明, 周宏扬, 等. SF6/N2混合气体中直流叠加雷电冲击复合电压作用下绝缘子闪络特性[J]. 电工技术学报, 2019, 34(14): 3084-3092. Wang Yuan, Ma Guoming, Zhou Hongyang, et al.Flashover characteristics of spacers in SF6/N2-filled under composite voltage of DC and lightning impulse[J]. Transactions of China Electrotechnical Society, 2019, 34(14): 3084-3092. [3] 许渊, 刘卫东, 陈维江, 等. GIS绝缘子局部放电高灵敏测量方法及应用[J]. 中国电机工程学报, 2020, 40(5): 1703-1713. Xu Yuan, Liu Weidong, Chen Weijiang, et al.High-sensitivity measurement method and application of GIS spacer partial discharge[J]. Proceedings of the CSEE, 2020, 40(5): 1703-1713. [4] 张连根, 路士杰, 李成榕, 等. 气体绝缘组合电器中微米量级金属粉尘运动和放电特征[J]. 电工技术学报, 2020, 35(2): 444-452. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Movement and discharge characteristics of micron-scale metal dust in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 444-452. [5] 许渊, 刘卫东, 陈维江, 等. 交流GIS绝缘子表面亚毫米级金属颗粒的运动和局部放电特性[J]. 中国电机工程学报, 2019, 39(14): 4315-4324. Xu Yuan, Liu Weidong, Chen Weijiang, et al.Motion characteristics and partial discharge characteristics of submillimeter metal particles on the surface of AC GIS spacer[J]. Proceedings of the CSEE, 2019, 39(14): 4315-4324. [6] 刘鹏, 吴泽华, 朱思佳, 等. 缺陷对交流1100kV GIL三支柱绝缘子电场分布影响的仿真[J]. 电工技术学报, 2022, 37(2): 469-478. Liu Peng, Wu Zehua, Zhu Sijia, et al.Simulation on electric field distribution of 1100kV AC tri-post insulator influenced by defects[J]. Transactions of China Electrotechnical Society, 2022, 37(2): 469-478. [7] 王健, 李庆民, 李伯涛, 等. 直流GIL中自由线形金属微粒的运动与放电特性[J]. 中国电机工程学报, 2016, 36(17): 4793-4800. Wang Jian, Li Qingmin, Li Botao, et al.Motion and discharge behavior of the free conducting wire-type particle within DC GIL[J]. Proceedings of the CSEE, 2016, 36(17): 4793-4800. [8] 王靖瑞, 王健, 倪潇茹, 等. 直流电场下C4F7N/CO2与SF6/N2混合气体中铝质球形自由微粒放电敏感度对比分析[J]. 电工技术学报, 2018, 33(20): 4682-4691. Wang Jingrui, Wang Jian, Ni Xiaoru, et al.Com-parative analysis of discharge sensitivity by the free spherical aluminum particle in C4F7N/CO2 and SF6/N2 gas mixtures under DC electric field[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4682-4691. [9] 李杰, 李晓昂, 吕玉芳, 等. 正弦振动激励下GIS内自由金属微粒运动特性[J]. 电工技术学报, 2021, 36(21): 4580-4589, 4597. Li Jie, Li Xiaoang, Lü Yufang, et al.Motion characteristics of free metal particles in GIS under sinusoidal vibration[J]. Transactions of China Elec-trotechnical Society, 2021, 36(21): 4580-4589, 4597. [10] 程涵, 魏威, Bilal lqbal Ayubi, 等. 直流GIL中线形金属微粒电动力学行为研究[J]. 电工技术学报, 2021, 36(24): 5283-5293. Cheng Han, Wei Wei, Bilal lqbal Ayubi, et al. Study on the electrodynamic behavior of linear metal particles in DC gas insulated transmission line[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5283-5293. [11] 孙继星, 戴琪, 边凯, 等. 自由导电微粒受迫运动过程与振动特性[J]. 电工技术学报, 2018, 33(22): 5224-5232. Sun Jixing, Dai Qi, Bian Kai, et al.Forced movement process and vibration characteristics of free con-ductive particle[J]. Transactions of China Electro-technical Society, 2018, 33(22): 5224-5232. [12] 季洪鑫. 交流运行电压下GIS中金属颗粒运动行为及放电特征[D]. 北京: 华北电力大学, 2017. [13] 刘绍峻. SF6电器中绝缘气体内的金属微屑[J]. 高压电器, 1988(5): 34-43. Liu Shaojun.Metal swarf in insulating gas in SF6 electrical appliance[J]. High Voltage Apparatus, 1988(5): 34-43. [14] 梁瑞雪, 王健, 胡琦, 等. 直流GIL盆式绝缘子附近微米级金属粉尘的动力学行为与吸附机制研究[J]. 中国电机工程学报, 2020, 40(4): 1387-1396. Liang Ruixue, Wang Jian, Hu Qi, et al.Study on kinetic behavior and adsorption mechanism of the micron metal dust near the basin-type insulator in DC GIL[J]. Proceedings of the CSEE, 2020, 40(4): 1387-1396. [15] Li Chuanyang, Zhu Yujie, Hu Jun, et al.Charge cluster triggers unpredictable insulation surface flash-over in pressurized SF6[J]. Journal of Physics D: Applied Physics, 2020, 54(1): 015308. [16] 柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 北京: 清华大学, 2011. [17] Hara M, Akazaki M.A method for prediction of gaseous discharge threshold voltage in the presence of a conducting particle[J]. Journal of Electrostatics, 1977, 2(3): 223-239. [18] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅱ: 电荷调控及抑制策略[J]. 电工技术学报, 2018, 33(22): 5145-5158. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part Ⅱ: charge control and suppression strategy[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 5145-5158. [19] 王珏, 徐蓉, 严萍. 环氧复合绝缘材料表面处理方法对高气压下闪络特性的影响[J]. 电工技术学报, 2018, 33(20): 4704-4711. Wang Jue, Xu Rong, Yan Ping.Effect of surface treatment methods of epoxy composite insulation on flashover characteristics under high pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4704-4711. [20] Zhang Cheng, Ma Yiyang, Kong Fei, et al.Surface charge decay of epoxy resin treated by AP-DBD deposition and direct fluorination[J]. IEEE Transa-ctions on Dielectrics and Electrical Insulation, 2019, 26(3): 768-775. [21] Liang Hucheng, Du Boxue, Li Jin, et al.Effects of non-linear conductivity on charge trapping and de-trapping behaviours in epoxy/SiC composites under DC stress[J]. IET Science, Measurement & Technology, 2017, 12(1): 83-89. [22] Xue Jianyi, Chen Junhong, Dong Junhao, et al.Enhancing flashover performance of alumina/epoxy spacers by adaptive surface charge regulation using graded conductivity coating[J]. Nanotechnology, 2020, 31(36): 364002. [23] Li Jin, Du Boxue, Kong X, et al.Nonlinear con-ductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(3): 1566-1573. [24] Xu Qunna, Fan Qianqian, Ma Jianzhong, et al.Facile synthesis of casein-based TiO2 nanocomposite for self-cleaning and high covering coatings: insights from TiO2 dosage[J]. Progress in Organic Coatings, 2016, 99: 223-229. [25] Farman A, Muhammad W, Rafaqat K, et al.TiO2 reinforced high-performance epoxy-co-polyamide composite coatings[J]. Progress in Organic Coatings, 2020, 146: 105726. [26] Xie Hui, Yang Zhong, Du Heng, et al.Influence of OMMT on surface breakdown of epoxy resin in liquid nitrogen[J]. IEEE Transactions on Applied Super-conductivity, 2019, 29(2): 1-5. [27] 李曦, 李国明, 胡裕龙. 一种多功能有机蒙脱土-纳米TiO2/环氧树脂复合材料[J]. 复合材料学报, 2018, 35(7): 1769-1774. Li Xi, Li Guoming, Hu Yulong.Versatile high-performance organo-montmorillonite-nano TiO2/epoxy composite[J]. Acta Materiae Composite Sinica, 2018, 35(7): 1769-1774. [28] Yin Jinhua, Guo Hai, Liu Yuanyuan, et al.Effect of MMT content on structure of polyimide/(TiO2+MMT) nanocomposite films[C]//9th International Forum on Strategic Technology, Cox's Bazar, 2014: 475-478. [29] Kumada A, Okabe S, Hidaka K.Residual charge distribution of positive surface streamer[J]. Journal of Physics D: Applied Physics, 2009, 42(9): 095209. [30] Ankit J, Nisha K, Sheeja J, et al.Surface properties and bacterial behavior of micro conical dimple textured Ti6Al4V surface through micro-milling[J]. Surfaces and Interfaces, 2020, 21: 100714. [31] 滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009. [32] Liu Qi, Zhang Songsong, Chen Jianpei.Numerical analysis of charged particle collection in wire-plate ESP[J]. Journal of Electrostatics, 2015, 74: 56-65.