Compact Design of 550kV Basin-Type Spacer in Gas Insulated Switchgear (Part II) —— Dielectric Distribution Optimization
Li Wendong1, Wang Chao1, Chen Tairan2, Li Wenqiang3, Gong Ruilei3, Zhang Guanjun1
1. State Key Laboratory of Electrical Insulation and Power Equipment Xi’an Jiaotong University Xi’an 710049 China; 2. Tai’an Power Supply Company State Grid Shandong Electric Power Company Tai’an 271000 China; 3. Shandong Taikai High Voltage Switchgear Co. Ltd Tai’an 271000 China
Abstract:To downsize the gas insulated metal enclosed switchgear (GIS), simplify manufacturing techniques, and reduce consumption in raw materials and SF6 gas, concept of functionally graded material was introduced, and the design of graded dielectric distribution for basin-type spacer was conducted based on the research “Compact Design of 550kV Gas Insulated Switchgear (Part one) —— Structure Optimization of Basin-type Spacer” (abbreviated to paper No. 1). Aiming at the problem of spacer’s surface electric field distortion at flange side, a topology optimization model of spatial distribution in relative permittivity was built to relieve corresponding electric field intensification in and around the basin insulator. Moreover, influences of several algorithm parameters on the permittivity distribution and electric field optimization results were discussed, which includes the density function coefficient, the gradient penalization weighing factor and the permittivity’s upper limit. Simulation results exhibited that a high permittivity area with a rhombus size was presented at the convex side of the outer flange region. Resultantly, the electric field distribution at the flange side is greatly improved even if the insulation distance is reduced by 15%. Therefore, the functionally graded material can replace “R” shape shielding corner added at the outer vessel and the metal shield ring embedded inside the spacer, which is potential in downsizing GIS devices, reducing materials/gas consumption and optimizing manufacture process. Moreover, a fabrication approach based on stereolithographic 3D printing and resin casting is proposed for the corresponding basin insulator, supporting the further experimental and industrial investigation.
李文栋, 王超, 陈泰然, 李文强, 宫瑞磊, 张冠军. 550kV GIS盆式绝缘子小型化设计(二)——介电分布优化[J]. 电工技术学报, 2022, 37(11): 2743-2752.
Li Wendong, Wang Chao, Chen Tairan, Li Wenqiang, Gong Ruilei, Zhang Guanjun. Compact Design of 550kV Basin-Type Spacer in Gas Insulated Switchgear (Part II) —— Dielectric Distribution Optimization. Transactions of China Electrotechnical Society, 2022, 37(11): 2743-2752.
[1] 王燕涛. 电力设备运行与维护的经济规律研究[D].济南: 山东大学, 2017. [2] 洪国耀, 赵羲英, 陈冰. 小型化SF6气体绝缘金属封闭开关设备的研究开发[J]. 高压电器, 2012, 48(10): 78-82. Hou Guoyao, Zhao Xiying, Chen Bing.Research and development of optimized & miniaturization GIS[J]. High Voltage Apparatus, 2012, 48(10): 78-82. [3] 崔博源, 王宁华, 王承玉, 等. 特高压气体绝缘金属封闭开关设备用盆式绝缘子的质量控制[J]. 高电压技术, 2014, 40(12): 3888-3894. Cui Boyuan, Wang Ninghua, Wang Chengyu, et al.Quality control for basin insulator used in gas insulated metal enclosed switchgear of ultra high voltage[J]. High Voltage Engineering, 2014, 40(12): 3888-3894. [4] 邵先军, 詹江杨, 常丁戈, 等. 550kV GIS盆式绝缘子多气泡放电的测试与诊断[J]. 高电压技术, 2020, 46(2): 554-560. Shao Xianjun, Zhan Jiangyang, Chang Dingge, et al.Test and diagnosis of multiple voids discharge for 550kV GIS insulation spacer[J]. High Voltage Engineering, 2020, 46(2): 554-560. [5] Xue Jianyi, Wang Han, Fan Xiaofeng, et al.Surface charge distribution patterns of a truncated cone-type spacer for HVDC GIL/GIS[J]. IET Science, Measurement & Technology, 2018, 12(4): 436-442. [6] 杜进桥, 张施令, 李乃一, 等. 特高压交流盆式绝缘子电场分布计算及屏蔽罩结构优化[J]. 高电压技术, 2013, 39(12): 3037-3043. Du Jinqiao, Zhang Shiling, Li Naiyi, et al.Electrical field distribution and shielding electrode structure optimization of UHVAC basin-type insulator[J]. High Voltage Engineering, 2013, 39(12): 3037-3043. [7] 陈允, 崔博源, 王宁华, 等. 1100kV气体绝缘开关设备用盆式绝缘子中心嵌件结构设计[J]. 高电压技术, 2016, 42(2): 564-570. Chen Yun, Cui Boyuan, Wang Ninghua, et al.Structural design of central insert in basin-type insulator used for 1100 kV GIS[J]. High Voltage Engineering, 2016, 42(2): 564-570. [8] 黎斌. GIS盆式绝缘子金属外圈及屏蔽内环设计的必要性[J]. 高压电器, 2012, 48(8): 109-113. Li Bin.Necessity of design for the metal outer rings and shielding inner ring of GIS basin-type insulator[J]. High Voltage Apparatus, 2012, 48(8): 109-113. [9] 李文栋, 刘哲, 有晓宇, 等. 叠层式介电功能梯度绝缘子的介电常数分布优化[J]. 西安交通大学学报, 2016, 50(10): 19-26. Li Wendong, Liu Zhe, You Xiaoyu, et al.Permittivity distribution optimization for multi-layer dielectric FGM insulator[J]. Journal of Xi’an Jiaotong University, 2016, 50(10): 19-26. [10] 孙秋芹, 郭晓和, 张永涛, 等. 基于介电功能梯度材料的盆式绝缘子电场分布优化[J]. 湖南大学学报(自然科学版), 2018, 45(8): 99-106. Sun Qiuqin, Guo Xiaohe, Zhang Yongtao, et al.Optimization of electric field distribution for spacer based on dielectric functionally graded material[J]. Journal of Hunan University (Natural Science), 2018, 45(8): 99-106. [11] 梁虎成, 杜伯学, 陈允, 等. 基于迭代算法的功能梯度绝缘子介电常数分布优化[J]. 电工技术学报, 2020, 35(17): 3758-3764. Liang Hucheng, Du Boxue, Chen Yun, et al.Permittivity distribution optimization of functionally graded insulator based on iterative method[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3758-3764. [12] Li Wendong, Li Xiaoran, Guo Baohong, et al.Topology optimization of truncated cone insulator with graded permittivity using variable density method[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1): 1-9. [13] Liang H C, Kurimoto M, Li J, et al.Application of ε- FGM for optimizing electric field distribution in AC cable terminal[C]//2020 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, 2020: 1-4. [14] 王超, 李文栋, 杨雄, 等. 基于几何形状/介电分布综合优化的GIS/GIL盆式绝缘子电场分布特性调控[J]. 中国电机工程学报, 2020, 40(22): 7166-7175. Wang Chao, Li Wendong, Yang Xiong, et al.A comprehensive strategy for electric field regulation of GIS/GIL spacer by using structure and dielectric distribution optimization[J]. Proceedings of the CSEE, 2020, 40(22): 7166-7175. [15] 王超, 李文栋, 陈泰然, 等. 550kV GIS盆式绝缘子小型化设计(一)——几何形状优化[J]. 电工技术学报, 2022, 37(7): 1847-1855. Wang Chao, Li Wendong, Chen Tairan, et al.Compact design of 550kV basin-type spacer in GIS(parti)—structure optimization[J]. Transactions of China Electro technical Society, 2022, 37(7): 1847-1855. [16] 黎斌. SF6高压电器设计[M]. 北京: 机械工业出版社, 2010. [17] Kato K, Kurimoto M, Shumiya H, et al.Application of functionally graded material for solid insulator in gaseous insulation system[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(2): 362-372. [18] Ueta G, Okabe S, Utsumi T, et al.Electric conductivity characteristics of FRP and epoxy insulators for GIS under DC voltage[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2015, 22(4): 2320-2328. [19] Xue Jianyi, Zhang Zhu, Ding Lijian, et al.Surface charge behavior and flashover performance on epoxy-based spacers by graded conductivity coatings subjected to DC voltages[J]. Journal of Physics D: Applied Physics, 2021, 54(48): 485502. [20] Sigmund O, Petersson J.Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima[J]. Structural Optimization, 1998, 16(1): 68-75. [21] Li Wendong, Wang Chao, Jiang Zhihui, et al.Stereolithography based additive manufacturing of high-κ polymer matrix composites facilitated by thermal plasma processed barium titanate microspheres[J]. Materials & Design, 2020, 192: 108733. [22] 詹振宇, 宋曼青, 律方成, 等. 交流环保GIL中微粒运动规律及陷阱抑制措施研究[J]. 中国电机工程学报, 2019, 39(增刊1): 278-286. Zhan Zhenyu, Song Manqing, Lü Fangcheng, et al.Study on particle movement and trap suppression in AC environmentally friendly GIL[J]. Proceedings of the CSEE, 2019, 39(S1): 278-286. [23] 王涵, 薛建议, 陈俊鸿, 等. SF6/N2混合气体中金属微粒对GIL盆式绝缘子表面电荷积聚特性的影响[J]. 电工技术学报, 2018, 33(20): 4663-4671. Wang Han, Xue Jianyi, Chen Junhong, et al.Influence of metal particles on surface charge accumulation characteristics of GIL spacer in SF6/N2 mixture[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4663-4671. [24] 何彦良, 丁未, 孙安邦, 等. 电场不均匀系数对SF6/N2混合气体负直流电晕电流脉冲特性的影响[J]. 电工技术学报, 2021, 36(15): 3124-3134. He Yanliang, Ding Wei, Sun Anbang, et al.Effect of electric field non-uniformity coefficient on current pulse characteristics of negative DC corona in SF6/N2 gas mixtures[J]. Transactions of China Electrotechnical Society, 2021, 36(15): 3124-3134. [25] 张连根, 路士杰, 李成榕, 等. 气体绝缘组合电器中微米量级金属粉尘运动和放电特征[J]. 电工技术学报, 2020, 35(2): 444-452. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Movement and discharge characteristics of micron-scale metal dust in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2020, 35(2): 444-452. [26] 许渊, 刘卫东, 陈维江, 等. 交流GIS绝缘子表面亚毫米级金属颗粒的运动和局部放电特性[J]. 中国电机工程学报, 2019, 39(14): 4315-4324, 4334. Xu Yuan, Liu Weidong, Chen Weijiang, et al.Motion characteristics and partial discharge characteristics of submillimeter metal particles on the surface of AC GIS spacer[J]. Proceedings of the CSEE, 2019, 39(14): 4315-4324, 4334. [27] 张亮, 何聪, 李军浩, 等. 振荡雷电冲击电压下气体绝缘组合电器中极不均匀场击穿特性研究[J]. 电工技术学报, 2020, 35(12): 2672-2680. Zhang Liang, He Cong, Li Junhao, et al.Breakdown characteristics study of non-uniform field in gas insulated switchgear under oscillating lightning impulses[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2672-2680. [28] Xue Jianyi, Chen Junhong, Dong Junhao, et al.Enhancing flashover performance of alumina/epoxy spacers by adaptive surface charge regulation using graded conductivity coating[J]. Nanotechnology, 2020, 31(36): 364002. [29] 于开坤, 张冠军, 穆海宝, 等. 表面处理对可加工陶瓷真空沿面闪络特性的影响[J]. 电工技术学报, 2012, 27(5): 115-120, 131. Yu Kaikun, Zhang Guanjun, Mu Haibao, et al.Effect of different surface treatment on the surface flashover characteristics of machinable ceramic in vacuum[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 115-120, 131. [30] 昝海斌, 李国倡, 王景兵, 等. GPO-3隔板对棒-板间隙工频击穿电压的影响及表面残余电荷特性[J]. 电工技术学报, 2020, 35(8): 1799-1806. Zan Haibin, Li Guochang, Wang Jingbing, et al.Influence of GPO-3 barrier on AC breakdown voltage of rod-plane gaps and surface residual charge characteristics[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1799-1806.